
KURS JĘZYKA C++
12. KOLEKCJE

SPIS TREŚCI

 Kontenery i ich zawartość

 Kontenery sekwencyjne

 Kontenery uporządkowane

 Kontenery nieuporządkowane

 Adaptatory kontenerów

 Iteratory

KONTENERY

 Kontenery służą do przechowywania i zarządzania kolekcjami danych.

 Rodzaje kontenerów:

 Kontenery sekwencyjne, gdzie każdy element ma określoną pozycję. Na
przykład: array, vector,deque, list, forward_list. Kontenery

sekwencyjne są zbudowane na tablicach dynamicznych albo na listach.

 Kontenery uporządkowane (w tym asocjacyjne), gdzie pozycja elementu
zależy od jego wartości. Na przykład: set, multiset, map, multimap.

Kontenery asocjacyjne są zbudowane na zrównoważonych drzewach BST.

 Kontenery nieuporządkowane, gdzie pozycja elementu nie zależy od jego
wartości. Na przykład: unordered_set, unordered_multiset,

unordered_map, unordered_multimap. Kontenery

nieuporządkowane są zbudowane na tablicach z haszowaniem.

KONTENERY

 Kontenery sekwencyjne będące kolekcjami uporządkowanymi,

w których każdy element posiada określoną pozycję. Pozycja ta

zależy od momentu oraz miejsca wstawienia, jest jednak

niezależna od wartości elementu.

 Kontenery asocjacyjne będące kolekcjami sortowanymi, w

których aktualna pozycja elementu zależy od jego wartości

(albo klucza w przypadku kontenerów operujących na parach

klucz-wartość), zgodnie z określonym kryterium sortowania.

 Kontenery asocjacyjne nieporządkujące to kolekcje

nieporządkujące i niezachowujące pozycji elementów, bo ich

zadaniem głównym jest ustalanie, czy (a nie gdzie) element

znajduje się w kolekcji. Elementy nie zachowują więc

uporządkowania ani względem kolejności wstawiania, ani

względem wartości — jedno i drugie może w czasie życia

kontenera ulegać zmianie.

KONTENERY

ELEMENTY KONTENERÓW

 Elementy kontenerów muszą spełniać wymagania
podstawowe:

 element musi być kopiowalny (konstruktor kopiujący),

 element musi być przypisywalny (przypisanie kopiujące),

 element musi być zniszczalny (publiczny destruktor).

 W pewnych sytuacjach elementy kontenerów
muszą spełniać wymagania dodatkowe:

 konstruktor domyślny (utworzenie niepustego
kontenera),

 operator porównywania == (wyszukiwanie),

 operator porównywania < (kryterium sortowania).

SEMANTYKA WARTOŚCI

A SEMANTYKA REFERENCJI

 Kontenery STL realizują semantykę wartości: tworzą

wewnętrzne kopie swoich elementów oraz zwracają kopie tych

elementów.

 Semantykę referencji można zaimplementować samodzielnie za

pomocą inteligentnych wskaźników – wskaźniki te mają

umożliwiać zliczanie referencji dla obiektów, do których

odnoszą się wskaźniki.

WSPÓLNE CECHY KONTENERÓW

 Wszystkie kontenery zapewniają semantykę wartości.

 Wszystkie elementy posiadają określoną kolejność

(kontenerowy udostępniają operacje zwracające iteratory

służące do iteracji po kolejnych elementach).

 Operacje na kontenerach nie są bezpieczne, czyli nie

sprawdzają możliwości wystąpienia każdego rodzaju błędu (to

funkcja wywołująca musi zapewnić spełnienie wymagań przez

parametry operacji).

WSPÓLNE OPERACJE NA KONTENERACH

 Konstruktror domyślny, kopiujący, przenoszący, zakresowy

(kopiuje elementy z innej kolekcji z podanego za pomocą

iteratorów zakresu), z listą wartości.

 Destruktor (usuwa wszystkie wartości).

 Przypisanie kopiujące i przenoszące.

 Funkcje składowe empty(), size(), clear(),

swap(coll).

 Funkcja globalna swap().

 Operatory relacyjne ==, !=, <, <=, >, >=.

 Iteratory begin(), end(), cbegin(), cend().

TABLICE

 Tablica to egzemplarz klasy kontenera array<>.

 Tablica modeluje tablicę statyczną (jest to otoczka dla

statycznej tablicy z języka C, zapewniająca interfejs

kontenera STL).

 Tablice kopiują elementy do własnych wewnętrznych,

statycznych tablic.

TABLICE

 Tablica array<> to jedyny kontener, którego elementy są

inicjalizowane domyślnie, jeśli nic nie zostanie przekazane jawnie.

 Inicjalizacja tablic:
std::array<int,4> x;

// elementy x posiadają niezdefiniowane wartości
std::array<int,4> x {};

// wszystkie elementy x mają wartość domyślną 0 (int())

TABLICE – PRZYKŁADY

// Tworzenie wykorzystujące inicjalizację zbiorczą
std::array<int, 3> a1{ {1, 2, 3} }; // podwójne klamry są wymagane
std::array<int, 3> a2 = {1, 2, 3}; // nie są potrzebne po znaku =
std::array<std::string, 2> a3 = { std::string("aa"), "bbb" };

// Pozwala na wykonywanie operacji jak na zwykłym kontenerze
std::sort(a1.begin(), a1.end());
std::reverse_copy(

a2.begin(), a2.end(),
std::ostream_iterator<int>(std::cout, " "));

std::cout << endl;

// Pozwala na użycie zakresowej pętli for
for(const auto &s: a3)

std::cout << s << ' ';

KONTENERY SEKWENCYJNE

– WEKTORY

 Wektor vector<> (zdefiniowany w <vector>) przechowuje
swoje elementy w tablicy dynamicznej.

 Uzyskujemy szybki dostęp do każdego elementu za pomocą
indeksowania.

 Dołączanie i usuwanie elementów na końcu wektora jest bardzo
szybkie, ale wstawienie lub usunięcie elementu ze środka zabiera
więcej czasu.

WEKTORY - PRZYKŁADY

// wstawianie do wektora

vector<int> coll;
…
for (int i=1; i<=6; ++i)
coll.push_back(i);

…
for (int i=0; i<coll.size(); ++i)
cout << coll[i] << ’ ’;

cout << endl;

WEKTORY - PRZYKŁADY

// usuwanie z wektora
vector<int> coll {0, 1, 2, 3, 4, 5, 6, 7, 8};

// usunięcie pierwszego elementu
coll.erase(coll.begin());

// usunięcie trzech ostatnich elementów
coll.erase(coll.end()-3, coll.end());

// usunięcie parzystych elementów
for (auto it = coll.begin(); it != coll.end();)

if (*it % 2 == 0) it = coll.erase(it);
else ++it;

…

for (int i=0; i<coll.size(); ++i)
cout << coll[i] << ’ ’;

cout << endl;

// wynik: 1 3 5

KONTENERY SEKWENCYJNE

– KOLEJKI O DWÓCH KOŃCACH

 Kolejka o dwóch końcach deque<> (zdefiniowana w <deque>)
przechowuje swoje elementy w tablicy dynamicznej, która może rosnąć
w dwie strony.

 Uzyskujemy szybki dostęp do każdego elementu za pomocą
indeksowania.

 Dołączanie i usuwanie elementów na końcu i na początku kolejki jest
bardzo szybkie, ale wstawienie lub usunięcie elementu ze środka zabiera
więcej czasu.

KOLEJKI O DWÓCH KOŃCACH

– PRZYKŁADY

//wstawianie na początek

deque<float> coll;
…
for (int i=1; i<=6; ++i)

coll.push_front(i*1.234);
…
for (int i=0; i<coll.size(); ++i)

cout << coll[i] << ’ ’;
cout << endl;

KONTENERY SEKWENCYJNE

– LISTY

 Lista list<> (zdefiniowana w <list>) przechowuje swoje
elementy w liście dwukierunkowej.

 W listach nie ma swobodnego dostępu do elementów kolekcji.

 Dołączanie i usuwanie elementów na końcu i na początku listy jest
bardzo szybkie, ale dostanie się do elementu ze środka zabiera dużo
czasu.

LISTY – PRZYKŁADY

list<char> coll;
…
for (char c=’a’; c<=’z’; ++c)
coll.push_back(c);

…
while (!coll.empty()) {
cout << coll.front() << ’ ’;
coll.pop_front(); }

cout << endl;

KONTENERY SEKWENCYJNE

– LISTY JEDNOKIERUNKOWE

 Lista forward_list<> (zdefiniowana w
<forward_list>) przechowuje swoje elementy w
liście jednokierunkowej.

 W listach nie ma swobodnego dostępu do elementów
kolekcji.

 Na listach jednokierunkowych można iterować tylko
do przodu.

 Dołączanie i usuwanie elementów na końcu i na
początku listy jest bardzo szybkie, ale dostanie się do
elementu ze środka zabiera dużo czasu.

KONTENERY SEKWENCYJNE

– LISTY JEDNOKIERUNKOWE

 Przykład:
forward_list<long> coll = { 2, 3, 5, 7, 11, 13 };

…

coll.resize(9);

for (auto elem : coll) {

cout << elem << ' ';

}

cout << endl;

KONTENERY SEKWENCYJNE

– ŁAŃCUCHY I TABLICE

 Obiektów klas łańcuchowych, czyli basic_string<>, string i
wstring, można używać jak kontenerów sekwencyjnych. Są one
podobne w zachowaniu do wektorów.

 Innym rodzajem kontenera może być tablica. Nie jest to klasa i nie ma
żadnych metod ale konstrukcja STL umożliwia uruchamianie na tablicach
różnych algorytmów (tak jak na kontenerach).

KONTENERY UPORZĄDKOWANE

 Kontenery uporządkowane wykonują automatycznie
sortowanie swoich elementów.

 Asocjacyjne kontenery uporządkowane przechowują
pary klucz-wartość (odpowiednio first i second)
i sortowanie następuje po kluczach.

 Domyślnie elementy lub klucze są porządkowane przy
pomocy operatora <.

 Kontenery uporządkowane są implementowane w
postaci zrównoważonych drzew BST (drzewa
czerwono-czarne).

 Wszystkie kontenery uporządkowane posiadają
domyślny parametr wzorca służący sortowaniu
(domyślnym jest operator <).

 Rodzaje kontenerów: zbiory set<>, wielozbiory
multiset<>, mapy map<> i multimapy
multimap<>.

KONTENERY UPORZĄDKOWANE

KONTENERY UPORZĄDKOWANE

 Przykład:
multiset<string, greater<string>> cities {

"Hanover", "Chicago", "Frankfurt",

"Nowy Jork", "Toronto", "Londyn",

"Frankfurt"

};

…

cities.insert({"Los Angeles",

"Monachium", "Hanover", "Londyn"});

…

for (const auto& elem : cities)

cout << elem << " ";

cout << endl;

KONTENERY NIEUPORZĄDKOWANE

 Kontenery nieuporządkowane przechowują elementy w
sposób nieuporządkowany (brak kryterium sortowania).

 Asocjacyjne kontenery nieuporządkowane przechowują
pary klucz-wartość (odpowiednio first i second).

 Kontenery nieuporządkowane są implementowane w
postaci tablic z haszowaniem.

 Rodzaje kontenerów: zbiory unordered_set<>,
wielozbiory unordered_multiset<>, mapy
unordered_map<> i multimapy
unordered_multimap<>.

KONTENERY NIEUPORZĄDKOWANE

KONTENERY NIEUPORZĄDKOWANE

 Przykład:
unordered_map<string, double> coll {

{ "lolek", 9.9 },

{ "bolek", 11.77 }

};

…

// oblicz kwadraty wszystkich wartości

for (pair<const string, double> &elem : coll)

elem.second *= elem.second;

ADAPTATORY KONTENERÓW

 Adaptatory kontenerów to kontenery wykorzystujące ogólną strukturę innych

kontenerów do realizacji pewnych specyficznych potrzeb.

 Adaptatorami kontenerów są stosy stack<>, kolejki queue<> i kolejki

priorytetowe priority_queue<>.

 Przy definiowaniu takich kontenerów można podać jako drugi parametr typ
kontenera do realizacji struktury (domyślnie jest to vector<>), na przykład:

stack<int, vector<int>> st;

queue<double> qu;

priority_queue<string, deque<string>, less<string>> pq;

ITERATORY

 Iterator to specjalny obiekt, który potrafi iterować po elementach
kolekcji.

 Iterator ma zaimplementowaną semantykę wskaźnika – posiada
operator wyłuskania elementu *, operatory przechodzenia do
elementów sąsiednich ++ i -- oraz operatory porównywania pozycji
== i !=.

ITERATORY

 Wszystkie kontenery udostępniają funkcje tworzące iteratory do
nawigowania po ich elementach – funkcja begin() zwraca iterator
wskazujący na pozycję z pierwszym elementem w kolekcji a funkcja
end() zwraca iterator wskazujący pozycję za ostatnim elementem.

 Każdy kontener definiuje dwa typy iteratorów –
kontener::iterator przeznaczony do iterowania po
elementach z możliwością odczytu i zapisu oraz
kontener::const_iterator przeznaczony do iterowania po
elementach tylko z możliwością odczytu.

ITERATORY

 Przykład 1:
list<char> coll;

…

list<char>::const_iterator pos;

for (pos=coll.cbegin(); pos!=coll.cend(); ++pos)

cout << *pos << ’ ’;

cout << endl;

 Przykład 2:
list<char> coll;

…

list<char>::iterator pos;

for (pos=coll.begin(); pos!=coll.end(); ++pos)

*pos = toupper(*pos);

	Slajd 1: Kurs języka C++
	Slajd 2: Spis treści
	Slajd 3: Kontenery
	Slajd 4: Kontenery
	Slajd 5: Kontenery
	Slajd 6: Elementy kontenerów
	Slajd 7: Semantyka wartości a semantyka referencji
	Slajd 8: Wspólne cechy kontenerów
	Slajd 9: Wspólne operacje na kontenerach
	Slajd 10: Tablice
	Slajd 11: Tablice
	Slajd 12: Tablice – przykłady
	Slajd 13: Kontenery sekwencyjne – wektory
	Slajd 14: Wektory - przykłady
	Slajd 15: Wektory - przykłady
	Slajd 16: Kontenery sekwencyjne – kolejki o dwóch końcach
	Slajd 17: Kolejki o dwóch końcach – przykłady
	Slajd 18: Kontenery sekwencyjne – listy
	Slajd 19: Listy – przykłady
	Slajd 20: Kontenery sekwencyjne – listy jednokierunkowe
	Slajd 21: Kontenery sekwencyjne – listy jednokierunkowe
	Slajd 22: Kontenery sekwencyjne – łańcuchy i tablice
	Slajd 23: Kontenery uporządkowane
	Slajd 24: Kontenery uporządkowane
	Slajd 25: Kontenery uporządkowane
	Slajd 26: Kontenery nieuporządkowane
	Slajd 27: Kontenery nieuporządkowane
	Slajd 28: Kontenery nieuporządkowane
	Slajd 29: Adaptatory kontenerów
	Slajd 30: Iteratory
	Slajd 31: Iteratory
	Slajd 32: Iteratory

