KURS JEZYKA C++

12. KOLEKCJE

SPIS TRESCI

B Kontenery i ich zawartosc

B Kontenery sekwencyjne

B Kontenery uporzadkowane

B Kontenery nieuporzadkowane
B Adaptatory kontenerow

B [teratory

KONTENERY

B Kontenery stuza do przechowywania i zarzadzania kolekcjami danych.
B Rodzaje kontenerow:

B Kontenery sekwencyjne, gdzie kazdy element ma okreslong pozycje. Na
przyktad: array,vector,deque,list, forward 1list.Kontenery

sekwencyjne sa zbudowane na tablicach dynamicznych albo na listach.

B Kontenery uporzadkowane (w tym asocjacyjne), gdzie pozycja elementu
zalezy od jego wartosci. Na przyktad: set,multiset,map,multimap.

Kontenery asocjacyjne sa zbudowane na zréwnowazonych drzewach BST.

B Kontenery nieuporzadkowane, gdzie pozycja elementu nie zalezy od jego
wartosci. Na przyktad: unordered set,unordered multiset,
unordered map,unordered multimap.Kontenery

nieuporzadkowane sa zbudowane na tablicach z haszowaniem.

KONTENERY

B Kontenery sekwencyjne bedace kolekcjami uporzadkowanymi,
w ktorych kazdy element posiada okreslona pozycje. Pozycja ta
zalezy od momentu oraz miejsca wstawienia, jest jednak
niezalezna od wartosci elementu.

B Kontenery asocjacyjne bedace kolekcjami sortowanymi, w
ktorych aktualna pozycja elementu zalezy od jego wartosci
(albo klucza w przypadku kontenerow operujacych na parach
klucz-wartosc), zgodnie z okreslonym kryterium sortowania.

B Kontenery asocjacyjne nieporzadkujace to kolekcje
nieporzadkujace i niezachowujace pozycji elementow, bo ich
zadaniem gtdwnym jest ustalanie, czy (a nie gdzie) element
znajduje sie w kolekcji. Elementy nie zachowuja wiec
uporzadkowania ani wzgledem kolejnosci wstawiania, ani
wzgledem wartosci — jedno i drugie moze w czasie zycia
kontenera ulegac¢ zmianie.

KONTENERY

Kontenery sekwencyjne: Kontenery asocjacyjne: Kontenery nieporzadkujace:

Tablica: Zbidr/wielozbidr: Zbiér/Wielozbidr
nieporzadkujacy:

Wektor:
—> N
Kolejka dwustronna:
€ -
Mapa/multimapa: Mapa/Multimapa

nieporzadkujaca:

Lista (dwukierunkowa):

-

Lista jednokierunkowa: r I— _|
2 ->| e e B O s B

ELEMENTY KONTENEROW

B Elementy kontenerow musza spetnia¢c wymagania
podstawowe:

B element musi by¢ kopiowalny (konstruktor kopiujacy),

B element musi by¢ przypisywalny (przypisanie kopiujace),

B element musi by¢ zniszczalny (publiczny destruktor).

B W pewnych sytuacjach elementy kontenerow
musza spetniac wymagania dodatkowe:

B konstruktor domyslny (utworzenie niepustego
kontenera),

B operator porownywania == (wyszukiwanie),

B operator porownywania < (kryterium sortowania).

SEMANTYKA WARTOSCI

A SEMANTYKA REFERENC]I

B Kontenery STL realizuja semantyke wartosci: tworza
wewnetrzne kopie swoich elementdw oraz zwracaja kopie tych
elementow.

B Semantyke referencji mozna zaimplementowac samodzielnie za
pomocy inteligentnych wskaznikoéw — wskazniki te maja
umozliwiac zliczanie referencji dla obiektow, do ktorych
odnosz3 sie wskazniki.

WSPOLNE CECHY KONTENEROW

B Wszystkie kontenery zapewniaja semantyke wartosci.

B Wszystkie elementy posiadaja okreslong kolejnosc
(kontenerowy udostepniaja operacje zwracajace iteratory
stuzace do iteracji po kolejnych elementach).

B Operacje na kontenerach nie sa bezpieczne, czyli nie
sprawdzaja mozliwosci wystapienia kazdego rodzaju btedu (to
funkcja wywotujaca musi zapewnic spetnienie wymagan przez
parametry operacji).

WSPOLNE OPERACJE NA KONTENERACH

Konstruktror domysiny, kopiujacy, przenoszacy, zakresowy
(kopiuje elementy z innej kolekcji z podanego za pomoca
iteratorow zakresu), z lista wartosci.

Destruktor (usuwa wszystkie wartosci).
Przypisanie kopiujace i przenoszace.

Funkcje skladowe empty (),size(),clear (),
swap (coll).

Funkcja globalna swap ().
Operatory relacyjne ==, ! =, <, <=, >, >=,

Iteratory begin (),end (), cbegin (),cend ().

TABLICE

B Tablica to egzemplarz klasy kontenera array<>.

B Tablica modeluje tablice statyczna (jest to otoczka dla
statycznej tablicy z jezyka C, zapewniajaca interfejs
kontenera STL).

B Tablice kopiuja elementy do wiasnych wewnetrznych,
statycznych tablic.

Y
Stata liczba elementéow

TABLICE

B Tablica array<> to jedyny kontener, ktorego elementy sa
inicjalizowane domyslnie, jesli nic nie zostanie przekazane jawnie.

B Inicjalizacja tablic:
std::array<int, 4> x;
/I elementy x posiadaja niezdefiniowane wartosci
std::array<int, 4> x {};
Il wszystkie elementy x maja wartos¢ domyslng 0 (int ())

TABLICE — PRZYKLADY

// Tworzenie wykorzystujgce inicjalizacje zbiorcza

std::array<int, 3> al{ {1, 2, 3} }; // podwdéjne klamry s3 wymagane
std::array<int, 3> a2 = {1, 2, 3}; // nie s3 potrzebne po znaku =
std::array<std::string, 2> a3 = { std::string("aa"), "bbb" };

// Pozwala na wykonywanie operacji jak na zwykiym kontenerze
std::sort(al.begin(), al.end());
std: :reverse_copy(
a2.begin(), a2.end(),
std::ostream _iterator<int>(std::cout, " "));
std: :cout << endl;

// Pozwala na uzycie zakresowej petli for
for(const auto &s: a3)
std::cout << s << ' ';

KONTENERY SEKWENCY]JNE

— WEKTORY

B Wektor vector<> (zdefiniowany w <vector>) przechowuje
swoje elementy w tablicy dynamiczne;.

B Uzyskujemy szybki dostep do kazdego elementu za pomoca
indeksowania.

B Dofaczanie i usuwanie elementow na koncu wektora jest bardzo

szybkie, ale wstawienie lub usunigcie elementu ze srodka zabiera
wiecej czasu.

WEKTORY - PRZYKLADY

// wstawianie do wektora
vector<int> coll;

for (int i=1; i<=6; ++i)
coll.push back(i);

for (int i=0; i<coll.size(); ++i)
cout << coll[i] << ? 7;
cout << endl;

WEKTORY - PRZYKLADY

// usuwanie z wektora
vector<int> coll {0, 1, 2, 3, 4, 5, 6, 7, 8};

// usuniecie pierwszego elementu
coll.erase(coll.begin());

// usuniecie trzech ostatnich elementdw
coll.erase(coll.end()-3, coll.end());

// usuniecie parzystych elementéw

for (auto it = coll.begin(); it != coll.end();)
if (*it % 2 == @) it = coll.erase(it);
else ++it;

for (int i=0; i<coll.size(); ++1)
cout << coll[i] <<’ ’;
cout << endl;

// wynik: 1 3 5

KONTENERY SEKWENCY]JNE

— KOLEJKI © DWOCH KONCACH

B Kolejka o dwoch koncach deque<> (zdefiniowana w <deque>)

przechowuje swoje elementy w tablicy dynamicznej, ktora moze rosnac
w dwie strony.

B Uzyskujemy szybki dostep do kazdego elementu za pomoca
indeksowania.

B Dofaczanie i usuwanie elementow na koncu i na poczatku kolejki jest

bardzo szybkie, ale wstawienie lub usuniecie elementu ze srodka zabiera
wiecej czasu.

KOLEJKI O DWOCH KONCACH

— PRZYKLADY

//wstawianie na poczgtek
deque<float> coll;

for £1nt i=1; i<=6; ++1;
1.push_ front(l*l 234);

for (int i=e; 1<coll 51ze(), ++1)
cout << coil <<’ 75
cout << endl;

KONTENERY SEKWENCY]JNE

— LISTY

B Lista 1ist<> (zdefiniowana w <11ist>) przechowuje swoje
elementy w liscie dwukierunkowe;.

B W listach nie ma swobodnego dostepu do elementow kolekgji.

B Dotfaczanie i usuwanie elementow na koncu i na poczatku listy jest

bardzo szybkie, ale dostanie sie do elementu ze srodka zabiera duzo
czasu.

LISTY — PRZYKLADY

list<char> coll;

for (char c=’a’; c<=’z"; ++c)
coll.push _back(c);

while (!coll.empty()) {
cout << coll.front() << ’ ’;
coll.pop front(); }

cout << endl;

KONTENERY SEKWENCY]JNE

— LISTY JEDNOKIERUNKOWE

M Lista forward 1list<> (zdefiniowana w
<forward 1ist>) przechowuje swoje elementy w
liscie jednokierunkowe;j.

B W listach nie ma swobodnego dostepu do elementow
kolekgji.

B Na listach jednokierunkowych mozna iterowac tylko
do przodu.

B Dotaczanie i usuwanie elementow na koncu i na
poczatku listy jest bardzo szybkie, ale dostanie sie do
elementu ze srodka zabiera duzo czasu.

KONTENERY SEKWENCY]JNE

— LISTY JEDNOKIERUNKOWE

B Przykiad:
forward list<long> coll = { 2, 3, 5, 7, 11, 13 };

coll.resize (9);
for (auto elem : coll) {
cout << elem << " ';

}
cout << endl;

KONTENERY SEKWENCY]JNE

— Lt ANCUCHY | TABLICE

B Obiektow klas tancuchowych, czyli basic string<>,stringi
wstring, mozna uzywac jak kontenerow sekwencyjnych. Sa one
podobne w zachowaniu do wektorow.

B Innym rodzajem kontenera moze byc tablica. Nie jest to klasa i nie ma
zadnych metod ale konstrukcja STL umozliwia uruchamianie na tablicach
roznych algorytmow (tak jak na kontenerach).

KONTENERY UPORZADKOWANE

B Kontenery uporzadkowane wykonuja automatycznie
sortowanie swoich elementow.

[l AsocEcyjne kontenery uporzadkowane przechowu;
pary klucz-wartosc (odpowiednio first i secong)
| sortowanie nastepuje po kluczach.

B Domyslnie elementy lub klucze sa porzadkowane przy
pomocy operatora <.

B Kontenery uporzadkowane sa implementowane w
postaci zrownowazonych drzew BST (drzewa
czerwono-czarne).

B Wszystkie kontenery uporzadkowane posiadaja
domysiny parametr wzorca stuzacy sortowaniu
(domyslnym jest operator <).

B Rodzaje kontenerow: zbiory set <>, wielozbiory
multiset<>, mapy map<> i multimapy
multimap<>.

KONTENERY UPORZADKOWANE

Zbior: Wielozbior:

Mapa: Multimapa:

KONTENERY UPORZADKOWANE

B Przykfad:
multiset<string, greater<string>> cities {

"Hanover", "Chicago", "Frankfurt",
"Nowy Jork", "Toronto", "Londyn",
"Frankfurt"

s

cities.insert ({"Los Angeles",
"Monachium", "Hanover", "Londyn"});

for (const auto& elem : cities)
cout << elem << " ";
cout << endl;

KONTENERY NIEUPORZADKOWANE

B Kontenery nieuporzadkowane przechowuja elementy w
sposob nieuporzadkowany (brak kryterium sortowania).

B Asocjacyjne kontenery nieuporzadkowane przechowuja
pary klucz-wartosc (odpowiednio first i second).

B Kontenery nieuporzadkowane s3 implementowane w
postaci tablic z haszowaniem.

B Rodzaje kontenerow: zbiory unordered set<>,
wielozbiory unordered multiset<>, mapy
unordered map<> i multimapy
unordered multimap<>.

KONTENERY NIEUPORZADKOWANE

Aneta
Ferdynand
Grzegorz

Jacek

—> hashfunc()

Janina
Jolanta

tukasz

Nikodem

Tomasz

/N

'

Jacek

b

Mikodem

Tomasz

Aneta

Jalanta

h 4

Grzegorz

L3

Ferdynand

]

Janina

——

tukasz

KONTENERY NIEUPORZADKOWANE

B Przykfad:
unordered map<string, double> coll ({
{ "lolek", 9.9 },
{ "bolek", 11.77 }

s

// oblicz kwadraty wszystkich wartosci
for (pair<const string, double> &elem : coll)
elem.second *= elem.second;

ADAPTATORY KONTENEROW

B Adaptatory kontenerow to kontenery wykorzystujace ogdlna strukture innych
kontenerow do realizacji pewnych specyficznych potrzeb.

B Adaptatorami kontenerow sa stosy stack<>, kolejki queue<> i kolejki
priorytetowe priority queue<>.

B Przy definiowaniu takich konteneréw mozna podac jako drugi parametr typ

kontenera do realizacji struktury (domyslnie jest to vector<>), na przykifad:
stack<int, vector<int>> st;

queue<double> qu;
priority queue<string, deque<string>, less<string>> pqg;

ITERATORY

M Iterator to specjalny obiekt, ktory potrafi iterowac po elementach
kolekgji.

M Iterator ma zaimplementowana semantyke wskaznika — posiada

operator wytuskania elementu *, operatory przechodzenia do
elementow sasiednich ++ i —— oraz operatory porownywania pozycji

ITERATORY

B Wszystkie kontenery udostepniaja funkcje tworzace iteratory do
nawigowania po ich elementach — funkcja begin () zwraca iterator
wskazujacy na pozycje z pierwszym elementem w kolekgji a funkcja
end () zwraca iterator wskazujacy pozycje za ostatnim elementem.

B Kazdy kontener definiuje dwa typy iteratorow —
kontener: :iterator przeznaczony do iterowania po
elementach z mozliwoscia odczytu i zapisu oraz
kontener::const iterator przeznaczony do iterowania po
elementach tylko z mozliwoscia odczytu.

ITERATORY

B Przykiad I:
list<char> coll;

list<char>::const iterator pos;

for (pos=coll.cbegin(); pos!=coll.cend(); ++tpos)
cout << *pos << " 7,

cout << endl;

B Przykfad 2:
list<char> coll;

list<char>::iterator pos;
for (pos=coll.begin(); pos!=coll.end(); ++pos)
*pos = toupper (*pos) ;

	Slajd 1: Kurs języka C++
	Slajd 2: Spis treści
	Slajd 3: Kontenery
	Slajd 4: Kontenery
	Slajd 5: Kontenery
	Slajd 6: Elementy kontenerów
	Slajd 7: Semantyka wartości a semantyka referencji
	Slajd 8: Wspólne cechy kontenerów
	Slajd 9: Wspólne operacje na kontenerach
	Slajd 10: Tablice
	Slajd 11: Tablice
	Slajd 12: Tablice – przykłady
	Slajd 13: Kontenery sekwencyjne – wektory
	Slajd 14: Wektory - przykłady
	Slajd 15: Wektory - przykłady
	Slajd 16: Kontenery sekwencyjne – kolejki o dwóch końcach
	Slajd 17: Kolejki o dwóch końcach – przykłady
	Slajd 18: Kontenery sekwencyjne – listy
	Slajd 19: Listy – przykłady
	Slajd 20: Kontenery sekwencyjne – listy jednokierunkowe
	Slajd 21: Kontenery sekwencyjne – listy jednokierunkowe
	Slajd 22: Kontenery sekwencyjne – łańcuchy i tablice
	Slajd 23: Kontenery uporządkowane
	Slajd 24: Kontenery uporządkowane
	Slajd 25: Kontenery uporządkowane
	Slajd 26: Kontenery nieuporządkowane
	Slajd 27: Kontenery nieuporządkowane
	Slajd 28: Kontenery nieuporządkowane
	Slajd 29: Adaptatory kontenerów
	Slajd 30: Iteratory
	Slajd 31: Iteratory
	Slajd 32: Iteratory

