
KURS JĘZYKA C++ 
13. ALGORYTMY 



SPIS TREŚCI

 Zakresy 

 Parametry funkcyjne 

 Klasyfikacja algorytmów 

 Algorytmy niemodyfikujące 

 Algorytmy modyfikujące 

 Algorytmy usuwające 

 Algorytmy mutujące 

 Algorytmy sortujące 

 Algorytmy pracujące na posortowanych danych 



ZAKRESY W ALGORYTMACH STL 

 W pliku nagłówkowym <algorithm> zdefiniowanych jest 

około 100 standardowych algorytmów działających na 

zakresach definiowanych przez pary iteratorów (dla wejścia) 

lub pojedyncze iteratory (dla wyjścia). 

 Niektóre algorytmy (na przykład sort()) wymagają 

iteratorów o dostępie swobodnym, a inne (na przykład 
find()) przeglądają sekwencje po kolei, więc wystarcza im 

iterator jednokierunkowy. 

 Wiele algorytmów fakt nieodnalezienia elementu standardowo 

oznacza zwróceniem końca zakresu. 



ZAKRESY W ALGORYTMACH STL 

 Algorytmy pracują na kolekcjach i na tablicach.

 Argumentami algorytmów STL są zakresy (iteratory w 

kolekcjach albo wskaźniki w tablicach)

 Po stronie funkcji wywołującej leży obowiązek zapewnienia 

poprawności zakresów – oznacza to, że początek musi odnosić 

się do wcześniejszego lub tego samego elementu tego samego 

kontenera co koniec.

 Algorytmy działają w trybie nadpisywania, a nie wstawiania –

funkcja wywołująca musi więc zapewnić, aby zakresy docelowe 

posiadały odpowiedni rozmiar.



PARAMETRY FUNKCYJNE

 Niektóre algorytmy umożliwiają przekazanie operacji zdefiniowanych 

przez użytkownika, które są następnie przez nie wewnętrznie 

wywoływane. 

 Operacje te to funktory – mogą być zwykłymi funkcjami lub obiektami 

funkcyjnymi lub lambdami.

 Funktory służyć mogą do realizacji następujących zadań:

 predykat jednoargumentowy jako kryterium wyszukiwania lub wybierania 

elementów; 

 predykat dwuargumentowy jako kryterium sortowania czy wyszukiwania w 

uporządkowanym zbiorze; 

 funktor aplikowany do wszystkich elementów z podanego zakresu;

 funktor dla algorytmów numerycznych.



KLASYFIKACJA ALGORYTMÓW

 Algorytmy dzielą się na niemodyfikujące (tylko czytające dane) i modyfikujące.

 Przeznaczenie algorytmu można wywnioskować po jego nazwie: 

 Przyrostek/sufiks _if używany jest wtedy, gdy istnieją dwie postacie pewnego 

algorytmu posiadające tę samą liczbę parametrów, lecz jedna wymaga podania 

wartości (wersja bez przyrostka) a druga funkcji lub obiektu funkcyjnego (wersja z 
przyrostkiem). Algorytm find() na przykład szuka elementu o określonej 

wartości, podczas gdy algorytm find_if() szuka elementu spełniającego podane 

kryterium.

 Przyrostek/sufiks _copy wskazuje, że elementy podlegają nie tylko manipulacji, lecz 

również kopiowaniu do zakresu docelowego. Algorytm reverse() na przykład 

odwraca kolejność elementów wewnątrz danego zakresu, podczas gdy algorytm 
reverse_copy() kopiuje elementy w odwrotnej kolejności do innego zakresu.



ALGORYTMY NIEMODYFIKUJĄCE 

 Algorytmy niemodyfikujące nie zmieniają ani kolejności, ani wartości 

przetwarzanych elementów. 

 Algorytmy niemodyfikujące współpracują z iteratorami wejściowymi i 

postępującymi, można je więc wywołać dla wszystkich kontenerów 

standardowych.



ALGORYTM FOR_EACH

 Algorytm for_each() wywołuje wobec każdego elementu 

operację podaną przez funkcję wywołującą. 

 Wywołanie:

for_each(iterator_pocz, iterator_kon, funkcja)

 Algorytm for_each() zwraca obiekt funkcyjny stosowany do 

elementów kolekcji.

 Przykład 1:
void echo(short num) {

cout << num << endl;

}

…

vector<short> vect;

…

for_each(vect.begin(), vect.end(), echo);



ALGORYTM FOR_EACH

 Przykład 2:
struct Sum {

void operator()(int n) { sum += n; }

int sum {0};

};

…

std::vector<int> nums{3, 4, 2, 8, 15, 267};

… 

auto print = [](const int& n) 

{ cout << n << " "; };

for_each(nums.cbegin(), nums.cend(), print);

cout << '\n';

…  

std::for_each(nums.begin(), nums.end(), 

[](int &n){ n++; });

…  

Sum s = std::for_each(nums.begin(), nums.end(), Sum());



ALGORYTMY NIEMODYFIKUJĄCE WYSZUKUJĄCE

 Fukcja find() znajduje pierwsze wystąpienie zadanej 

wartości. 

 Fukcja find_end() znajduje ostatnie wystąpienie zadanego 

ciągu wartości. 

 Fukcja search() znajduje pierwsze wystąpienie zadanego 

ciągu wartości. 

 Fukcja min_element() znajduje element o najmniejszej 

wartości. 

 Fukcja max_element() znajduje element o największej 

wartości. 



ALGORYTMY NIEMODYFIKUJĄCE WYSZUKUJĄCE

 Przykład 1: 

const int N = 7;

int myints[N] = {3,7,2,5,6,4,9};

… 

// using default comparison:

cout << "The smallest element is "

<< * min_element(myints, myints+N) << endl;

cout << "The largest element is "  

<< * max_element(myints, myints+N) << endl;



ALGORYTMY NIEMODYFIKUJĄCE WYSZUKUJĄCE

 Przykład 2: 
int n;

cin >> n;

… 

std::vector<int> v {0, 1, 2, 3, 4};

… 

auto result = find(begin(v), end(v), n);

if (result != end(v)) 

cout << "v contains: " << n << '\n';

else

cout << "v does not contain: " << n << '\n';



ALGORYTMY NIEMODYFIKUJĄCE 

SPRAWDZAJĄCE

 Fukcja count_if() zlicza wystąpienia zadanej wartości w określonym 

zakresie. 

 Fukcja equal() sprawdza czy wartości z podanych zakresów są sobie równe. 

 Fukcja missmatch() znajduje pierwsze wystąpienie różnicy w podanych 

ciągach wartości (wynikiem jest para iteratorów). 

 Fukcja is_permutation() sprawdza czy jeden zakres jest permutacją innego 

zakresu. 

 Fukcja is_sorted() sprawdza czy jeden zakres jest posortowany. 



ALGORYTM IS_PRMUTATION

static constexpr auto v1 = {1,2,3,4,5};

static constexpr auto v2 = {3,5,4,1,2};

static constexpr auto v3 = {3,5,4,1,1};

cout << v2 << " is a permutation of " << v1 << ": " << boolalpha

<< is_permutation(v1.begin(), v1.end(), v2.begin()) << endl

<< v3 << " is a permutation of " << v1 << ": " << boolalpha

<< is_permutation(v1.begin(), v1.end(), v3.begin()) << endl;



ALGORYTMY MODYFIKUJĄCE 

 Algorytmy modyfikujące zmieniają wartość elementów. Mogą one 

bezpośrednio modyfikować elementy z danego zakresu lub 

modyfikować je podczas kopiowania do innego zakresu.

 Algorytm for_each() dopuszcza operację modyfikującą swój 

argument – zatem argument ten musi być przekazywany przez 

referencję.

 Przykład:
void square (int &elem) { elem *= elem; }

…

for_each(coll.begin(), coll.end(), square);



ALGORYTMY MODYFIKUJĄCE 

 Algorytm transform() wykorzystuje operację zwracającą 

modyfikowany argument (wynik operacji można przypisać do pierwotnego 

elementu). 

 Przykład:
int square (int elem) { return elem * elem; }

…

transform(coll.begin(), coll.end(), 

coll.begin(), square);

 Funkcja copy() kopiuje zakres począwszy od pierwszego elementu; 

funkcja copy_backward() kopiuje zakres począwszy od ostatniego 

elementu. 

 Funkcja move() przenosi zakres począwszy od pierwszego elementu; 

funkcja move_backward() przenosi zakres począwszy od ostatniego 

elementu. 



ALGORYTMY MODYFIKUJĄCE 

 Funkcja fill() zastępuje każdy element z zadanego zakresu 

podaną wartością. 

 Funkcja replace() zastępuje elementy o określonej 

wartości z zadanego zakresu inną wartością.

 Funkcja generate() zastępuje każdy element z zadanego 

zakresu wartością wygenerowaną przez podaną funkcję 

bezargumentową.

 Funkcja merge() scala dwa zakresy. 

 Funkcja swap_ranges() zamienia miejscami elementy z 

dwóch zakresów.



ALGORYTMY USUWAJĄCE 

 Algorytmy usuwające są specjalną postacią algorytmów modyfikujących. Mogą 

one usuwać elementy albo z pojedynczego zakresu, albo przy jednoczesnym 

kopiowaniu do innego zakresu. Tak jak w przypadku algorytmów modyfikujących, 

jako kontenera docelowego nie możemy użyć kontenera asocjacyjnego ani 

nieuporządkowanego.

 Funkcja remove() usuwa elementy o podanej wartości.

 Funkcja remove_if() usuwa elementy spełniające zadany predykat.

 Funkcja unique() usuwa elementy powtarzające się (sąsiednie).



ALGORYTMY MUTUJĄCE 

 Algorytmy mutujące to algorytmy, które zmieniają kolejność elementów (a nie 

ich wartości) poprzez operacje przypisania i zamiany ich wartości.

 Funkcja reverse() odwraca kolejność elementów.

 Funkcja rotate() przesuwa cyklicznie elementy.

 Funkcja random_shuffle() losowo zmienia kolejność elementów.

 Funkcja partition() dzieli zakres na elementy spełniające predykat (na 

początku kolekcji) i te niespełniające (na końcu kolekcji – funkcja zwraca iterator

do początku drugiego przedziału. 



ALGORYTMY SORTUJĄCE 

 Algorytmy sortujące są specjalnym rodzajem algorytmu mutującego, ponieważ 

także zmieniają kolejność elementów. Sortowanie jest jednak bardziej 

skomplikowane niż proste operacje mutujące i zabiera zwykle więcej czasu.

 Funkcja sort() sortuje elementy. 

 Funkcja stable_sort() sortuje elementy w sposób stabilny.



ALGORYTMY PRACUJĄCE NA 

POSORTOWANYCH DANYCH

 Algorytmy przeznaczone dla zakresów posortowanych wymagają, aby zakresy, na 

których one operują, były posortowane zgodnie z ich kryterium sortowania. 

 Funkcja binary_search() sprawdza, czy dany zakres zawiera określony 

element.



LITERATURA 

 [1] B.Stroustrup: C++. Kompendium wiedzy. Wydanie 4. Helion 

2013. Rozdział 32: Algorytmy STL.

 [2] N.M.Josuttis: C++. Biblioteka standardowa. Wydanie 2. Helion 

2014. Rozdział 11: Algorytmy STL.


	Slajd 1: Kurs języka C++ 
	Slajd 2: Spis treści
	Slajd 3: Zakresy w algorytmach STL 
	Slajd 4: Zakresy w algorytmach STL 
	Slajd 5: Parametry funkcyjne
	Slajd 6: Klasyfikacja algorytmów
	Slajd 7: Algorytmy niemodyfikujące 
	Slajd 8: Algorytm for_each
	Slajd 9: Algorytm for_each
	Slajd 10: Algorytmy niemodyfikujące wyszukujące
	Slajd 11: Algorytmy niemodyfikujące wyszukujące
	Slajd 12: Algorytmy niemodyfikujące wyszukujące
	Slajd 13: Algorytmy niemodyfikujące sprawdzające
	Slajd 14: Algorytm is_prmutation
	Slajd 15: Algorytmy modyfikujące 
	Slajd 16: Algorytmy modyfikujące 
	Slajd 17: Algorytmy modyfikujące 
	Slajd 18: Algorytmy usuwające 
	Slajd 19: Algorytmy mutujące 
	Slajd 20: Algorytmy sortujące 
	Slajd 21: Algorytmy pracujące na posortowanych danych
	Slajd 22: Literatura 

