KURS JEZYKA C++

I3.ALGORYTMY

SPIS TRESCI

Zakresy

Parametry funkcyjne
Klasyfikacja algorytmow
Algorytmy niemodyfikujace
Algorytmy modyfikujace
Algorytmy usuwajace
Algorytmy mutujace

Algorytmy sortujace

Algorytmy pracujace na posortowanych danych

ZAKRESY W ALGORYTMACH STL

B W pliku nagtdwkowym <algorithm> zdefiniowanych jest
okoto 100 standardowych algorytmow dziatajacych na
zakresach definiowanych przez pary iteratoréow (dla wejscia)
lub pojedyncze iteratory (dla wyjscia).

B Niektore algorytmy (na przykiad sort ()) wymagaja
iteratorow o dostepie swobodnym, a inne (na przyktad
find ()) przegladaja sekwencje po kolei, wiec wystarcza im
iterator jednokierunkowy.

B Wiele algorytmdw fakt nieodnalezienia elementu standardowo
oznacza zwroceniem konca zakresu.

ZAKRESY W ALGORYTMACH STL

Algorytmy pracuja na kolekcjach i na tablicach.

B Argumentami algorytmow STL sa zakresy (iteratory w
kolekcjach albo wskazniki w tablicach)

B Po stronie funkcji wywotujacej lezy obowiazek zapewnienia
poprawnosci zakresdw — oznacza to, ze poczatek musi odnosic
sie do wczesniejszego lub tego samego elementu tego samego
kontenera co koniec.

B Algorytmy dziafajg w trybie nadpisywania, a nie wstawiania —
funkcja wywotujaca musi wiec zapewnic, aby zakresy docelowe
posiadaty odpowiedni rozmiar.

PARAMETRY FUNKCY|NE

B Niektore algorytmy umozliwiaja przekazanie operacji zdefiniowanych
przez uzytkownika, ktore s3 nastepnie przez nie wewnetrznie

wywotywane.

B Operacje te to funktory — moga byc¢ zwyktymi funkcjami lub obiektami
funkcyjnymi lub lambdami.

B Funktory stuzy¢ moga do realizacji nastepujacych zadan:

B predykat jednoargumentowy jako kryterium wyszukiwania lub wybierania
elementow;

B predykat dwuargumentowy jako kryterium sortowania czy wyszukiwania w
uporzadkowanym zbiorze;

B funktor aplikowany do wszystkich elementow z podanego zakresu;

B funktor dla algorytmdw numerycznych.

KLASYFIKACJA ALGORYTMOW

B Algorytmy dziela sie na niemodyfikujace (tylko czytajace dane) i modyfikujace.
B Przeznaczenie algorytmu mozna wywnioskowac po jego nazwie:

B Przyrostek/sufiks if uzywany jest wtedy, gdy istnieja dwie postacie pewnego
algorytmu posiadajace te samg liczbe parametrow, lecz jedna wymaga podania
wartosci (wersja bez przyrostka) a druga funkgji lub obiektu funkcyjnego (wersja z
przyrostkiem).Algorytm f£ind () na przykfad szuka elementu o okreslone;j
wartosci, podczas gdy algorytm find 1if () szuka elementu spetniajacego podane
kryterium.

B Przyrostek/sufiks copy wskazuje, ze elementy podlegaja nie tylko manipulacji, lecz
rowniez kopiowaniu do zakresu docelowego.Algorytm reverse () na przyktad
odwraca kolejnos¢ elementdw wewnatrz danego zakresu, podczas gdy algorytm
reverse copy () kopiuje elementy w odwrotnej kolejnosci do innego zakresu.

ALGORYTMY NIEMODYFIKUJACE

B Algorytmy niemodyfikujace nie zmieniaja ani kolejnosci, ani wartosci
przetwarzanych elementow.

B Algorytmy niemodyfikujace wspotpracuja z iteratorami wejsciowymi i
postepujacymi, mozna je wigc wywotac dla wszystkich kontenerow
standardowych.

ALGORYTM FOR EACH

B Algorytm for each () wywoluje wobec kazdego elementu
operacje podana przez funkcje wywotujaca.

B Wywofanie:
for_each(iterator_pocz, iterator_kon, funkcja)

B Algorytm for_each() zwraca obiekt funkcyjny stosowany do
elementéw kolekgiji.

B Przykiad I:
void echo (short num) {
cout << num << endl;

}

vector<short> wvect;

for each(vect.begin(), vect.end(), echo);

ALGORYTM FOR EACH

B Przykfad 2:
struct Sum {

Y

void operator () (int n) { sum += n; }
int sum {0};

std: :vector<int> nums{3, 4, 2, 8, 15, 267};
auto print = [] (const inté& n)

{ cout << n << " "; };
for each (nums.cbegin(), nums.cend(), print);

cout << '\n';

std::for each (nums.begin(), nums.end(),
[] (int &n) { n+t+; });

Sum s = std::for each(nums.begin(), nums.end(), Sum());

ALGORYTMY NIEMODYFIKUJACE WYSZUKUJACE

Fukcja £ind () znajduje pierwsze wystapienie zadanej
wartosci.

Fukcja find end () znajduje ostatnie wystapienie zadanego
Ciagu wartosci.

Fukcja search () znajduje pierwsze wystapienie zadanego
Ciagu wartosci.

Fukcjamin element () znajduje element o najmniejszej
wartosci.

Fukcja max element () znajduje element o najwigkszej
wartosci.

ALGORYTMY NIEMODYFIKUJACE WYSZUKUJACE

B Przykfad I:

const 1nt N = 7;
int myints[N] = {3,7,2,5,6,4,9};
// using default comparison:
cout << "The smallest element is "

<< * min element (myints, myints+N) << endl;
cout << "The largest element is "

<< * max element (myints, myints+N) << endl;

ALGORYTMY NIEMODYFIKUJACE WYSZUKUJACE

B Przykfad 2:
int n;
cin >> n;

std: :vector<int> v {0, 1, 2, 3, 4};

auto result = find(begin(v), end(v), n);
1f (result != end(v))

cout << "v contains: " << n << '"\n';
else

cout << "v does not contain: " << n << '\n';

ALGORYTMY NIEMODYFIKUJACE

SPRAWDZAJACE

B Fukcja count if () zlicza wystapienia zadanej wartosci w okreslonym
zakresie.

B Fukcja equal () sprawdza czy wartosci z podanych zakresow s3 sobie rowne.

B Fukcja missmatch () znajduje pierwsze wystapienie réznicy w podanych
ciagach wartosci (wynikiem jest para iteratorow).

B Fukcja is permutation () sprawdza czy jeden zakres jest permutacja innego
zakresu.

B Fukcja is sorted () sprawdza czy jeden zakres jest posortowany.

static constexpr auto vl = {1,2,3,4,5};

static constexpr auto v2 = {3,5,4,1,2};

static constexpr auto v3 = {3,5,4,1,1};

cout << v2 << " is a permutation of " << vl << ": " << boolalpha
<< is_permutation (vl.begin(), vl.end(), vZ2.begin()) << endl
<< v3 << " 1s a permutation of " << vl << ": " << boolalpha

<< is_permutation (vl.begin(), vl.end(), v3.begin()) << endl;

ALGORYTMY MODYFIKUJACE

B Algorytmy modyfikujace zmieniaja wartosc elementow. Moga one
bezposrednio modyfikowac elementy z danego zakresu lub
modyfikowac je podczas kopiowania do innego zakresu.

B Algorytm for each () dopuszcza operacje modyfikujaca swoj
argument — zatem argument ten musi byc przekazywany przez
referencje.

B Przykfad:
vold square (int &elem) { elem *= elem; }

for each(coll.begin(), coll.end(), square);

ALGORYTMY MODYFIKUJACE

B Algorytm transform () wykorzystuje operacje zwracajaca
modyfikowany argument (wynik operacji mozna przypisa¢ do pierwotnego
elementu).

B Przykfad:
int square (int elem) { return elem * elem; }

transform(coll.begin (), coll.end(),
coll.begin (), square);

B Funkcja copy () kopiuje zakres poczawszy od pierwszego elementu;
funkcja copy backward () kopiuje zakres poczawszy od ostatniego
elementu.

B Funkcja move () przenosi zakres poczawszy od pierwszego elementu;
funkcja move backward () przenosi zakres poczawszy od ostatniego
elementu.

ALGORYTMY MODYFIKUJACE

Funkcja £i11 () zastepuje kazdy element z zadanego zakresu
podana wartoscia.

B Funkcja replace () zastepuje elementy o okreslonej
wartosci z zadanego zakresu inna wartoscia.

B Funkcja generate () zastepuje kazdy element z zadanego
zakresu wartoscia wygenerowang przez podana funkcje
bezargumentowa.

B Funkcja merge () scala dwa zakresy.

B Funkcja swap ranges () zamienia miejscami elementy z
dwoch zakresow.

ALGORYTMY USUWAJACE

Algorytmy usuwajace sa specjalng postacia algorytmow modyfikujacych. Moga
one usuwac elementy albo z pojedynczego zakresu, albo przy jednoczesnym
kopiowaniu do innego zakresu.Tak jak w przypadku algorytmow modyfikujacych,
jako kontenera docelowego nie mozemy uzyc¢ kontenera asocjacyjnego ani
nieuporzadkowanego.

Funkcja remove () usuwa elementy o podanej wartosci.
Funkcja remove 1if () usuwa elementy spetniajace zadany predykat.

Funkcja unique () usuwa elementy powtarzajace sie (sasiednie).

ALGORYTMY MUTUJACE

B Algorytmy mutujace to algorytmy, ktore zmieniaja kolejnosc¢ elementow (a nie

ich wartosci) poprzez operacje przypisania i zamiany ich wartosci.

Funkcja reverse () odwraca kolejnosc¢ elementow.
Funkcja rotate () przesuwa cyklicznie elementy.
Funkcja random shuffle () losowo zmienia kolejnos¢ elementow.

Funkcja partition () dzieli zakres na elementy spetniajace predykat (na
poczatku kolekgji) i te niespetniajace (na koncu kolekcji — funkcja zwraca iterator
do poczatku drugiego przedziatu.

ALGORYTMY SORTUJACE

Algorytmy sortujace sa specjalnym rodzajem algorytmu mutujacego, poniewaz
takze zmieniaja kolejnosc¢ elementow. Sortowanie jest jednak bardziej
skomplikowane niz proste operacje mutujace i zabiera zwykle wiecej czasu.

B Funkcja sort () sortuje elementy.

B Funkcja stable sort () sortuje elementy w sposob stabilny.

ALGORYTMY PRACUJACE NA

POSORTOWANYCH DANYCH

B Algorytmy przeznaczone dla zakresow posortowanych wymagaja, aby zakresy, na
ktorych one operuja, byly posortowane zgodnie z ich kryterium sortowania.

B Funkcjabinary search () sprawdza, czy dany zakres zawiera okreslony
element.

LITERATURA

B [|] B.Stroustrup: C++. Kompendium wiedzy.Wydanie 4. Helion
2013. Rozdziat 32: Algorytmy STL.

B [2] N.M Josuttis: C++. Biblioteka standardowa.Vydanie 2. Helion
2014. Rozdziat | |: Algorytmy STL.

	Slajd 1: Kurs języka C++
	Slajd 2: Spis treści
	Slajd 3: Zakresy w algorytmach STL
	Slajd 4: Zakresy w algorytmach STL
	Slajd 5: Parametry funkcyjne
	Slajd 6: Klasyfikacja algorytmów
	Slajd 7: Algorytmy niemodyfikujące
	Slajd 8: Algorytm for_each
	Slajd 9: Algorytm for_each
	Slajd 10: Algorytmy niemodyfikujące wyszukujące
	Slajd 11: Algorytmy niemodyfikujące wyszukujące
	Slajd 12: Algorytmy niemodyfikujące wyszukujące
	Slajd 13: Algorytmy niemodyfikujące sprawdzające
	Slajd 14: Algorytm is_prmutation
	Slajd 15: Algorytmy modyfikujące
	Slajd 16: Algorytmy modyfikujące
	Slajd 17: Algorytmy modyfikujące
	Slajd 18: Algorytmy usuwające
	Slajd 19: Algorytmy mutujące
	Slajd 20: Algorytmy sortujące
	Slajd 21: Algorytmy pracujące na posortowanych danych
	Slajd 22: Literatura

