KURS JEZYKA C++

4. OBIEKTY FUNKCY]JNE | LAMBDY

SPIS TRESCI

B Funktory i predykaty
B Predefiniowane obiekty funkcyjne

B Funkcje lambda

OBIEKTY FUNKCY|NE

B Obiekt funkcyjny to obiekt, w ktorym jest zdefiniowany
operator wywotania funkcji operator ().

B Obiekty funkcyjne s3 obiektami dziatajacymi jak funkcje.
B Zalety obiektow funkcyjnych:

B posiadaja stan (pamiec),

B maja wilasny typ (moga by¢ parametrami szablonow),

B dziafaja co najmniej tak szybko jak wskazniki do funkgiji.

OBIEKT FUNKCY]JNY JAKO KRYTERIUM

SORTOWANIA

class Person {

public:
string firstname () const;
string lastname () const;

i
struct PersonSortCriterion {
bool operator() (const Person &pl, const Person &p2) const {
return pl.lastname ()<pZ2.lastname() or

pl.lastname ()==p2.lastname () and pl.firstname()<p2.firstname ()

set<Person, PersonSortCriterion> coll;

FUNKTORY | PREDYKATY

B Funktor to obiekt klasy z operatorem wywotania
funkcji.

B Predykat to funktor, ktory wyniku zwraca wartosc
boolowska.

B Obiekt funkcji taczacy dwa obiekty funkcyjne nosi nazwe
adaptatora funktorow.

OBIEKT FUNKCY]NY ZE STANEM

WEWNETRZNYM

class IntSequence {
private:
int value;
public:
// konstruktor
IntSequence (int 1nit = 0) : value(init) {}
// operator wywolania funkcji
int operator () () {

return ++value;

s

ALGORYTM FOR EACH

B Algorytm for each aplikuje funkcje zdefiniowana w
obiekcie funkcyjnym do wszystkich elementow kolekgji.

B Algorytm for each zwraca swoj obiekt funkcyjny.

B Stan danego obiektu funkcyjnego mozemy wiec
sprawdzic, analizujac wartosc zwrocong przez algorytm
for each.

ALGORYTM FOR EACH

class MeanValue {

int num = 0; // number of elements

long sum = 0; // sum of all element values
public:

// MeanValue() : num(0), sum(0) {}

void operator() (int elem) {
++num; // increment count
sum += elem; // add value
}
double value () {
return static cast<double>(sum) / num;
}
b

vector<int> coll = /* .. */;
MeanValue mv =

for each(coll.begin(), coll.end(), MeanValue())
cout << mv.value () << endl;

FOR EACH

DLA FUNKTORA |-ARGUMENTOWEGO

template<typename elementType>
struct DisplayElement ({
volid operator () (const elementType &element) const {

cout << element << ' ';

}
b

vector<int> wvec;

for each (vec.begin(), vec.end(), DisplayElement<int>());
cout << endl;

PREDYKATY

B Predykaty sa to funkcje lub obiekty funkcyjne zwracajace
wartos¢ boolowska albo wartos¢, ktora mozna niejawnie
przekonwertowac na typ bool.

B Predykaty sa czesto wewnetrznie kopiowane przez
algorytmy STL — dlatego predykat powinien byc
bezstanowy (predykat nie powinien zmienia¢ swojego
stanu w wyniku wywofania, a kopia predykatu powinna
posiadac ten sam stan co oryginat).

B W przypadku lambd problem ten nie wystepuje, a to
dzieki mozliwosci wspotdzielenia stanu pomiedzy
wszystkimi kopiami obiektu funkcyjnego.

PREDEFINIOWANE OBIEKTY FUNKCY]NE

Stosowanie predefiniowanych obiektow funkcyjnych wymaga
wiaczenia pliku nagtdwkowego <functional>.

B Arytmetyczne obiekty funkcyjne: negate<>,plus<>,
minus<>ymultiplies<>,divides<>,modulus<>.

B Obiekty funkcyjne porownujace: 1ess<> (domysine
kryterium przy sortowaniu czy wyszukiwaniu binarnym),
greater<>,less equal<> greater equal<>,
equal to<>,not equal to<>.

B Obiekty funkcyjne do tworzenia wyrazen logicznych:
logical not<>,logical and<>,logical or<>.

B Obiekty funkcyjne uzywajace operatorow bitowych:
bit not<>bit and<>bit xor<>bit or<>.

ADAPTATOR BIND()

B Adaptator funkg;ji jest to obiekt funkcyjny, ktory umozliwia
sktadanie obiektow funkcyjnych ze soba nawzajem, z
okreslonymi wartosciami lub ze specjalnymi funkcjami.

B Adaptator wiazania argumentow bind () pozwala na:

B adaptacje i kompozycje nowych obiektow funkcyjnych z
istniejacych i predefiniowanych obiektow funkcyjnych;

B wywotywanie funkcji globalnych;

B wywolywanie funkcji sktadowych na rzecz obiektow, wskaznikow
do obiektow i inteligentnych wskaznikow do obiektow.

B Argumenty przekazane do wywotania obiektu wiazacego sa

W wyrazeniu wiazacym widoczne jako symbole zastepcze
std::placeholders:: 1,

std::placeholders:: 2 itd.

ADAPTATOR BIND()

auto plusl0 = bind(
plus<int> (),
std::placeholders:: 1,
10);

cout << "+10: " << pluslO(7) << endl;

auto inversDiv = bind/(
divides<double> (),
std::placeholders:: 2,
std::placeholders:: 1);

cout << "invdiv: " << inversDiv (49, 7)

<< endl;

RACHUNEK LAMBDA

B Nazwa wywodzi sie od rachunku lambda stworzonego przez Alonzo Churcha w
1932 roku, gdzie symbol greckiej litery A oznaczat wszystko co mozna wywotac

przez funkcje.

B Rachunek lambda okazat sie by¢ modelem obliczen rownowaznym maszynie
Turinga.

B Rachunek lambda bez typow stanowit inspiracje dla powstania programowania
funkcyjnego. Rachunek lambda z typami jest podstawa dzisiejszych systemow
typow w jezykach programowania.

WYRAZENIA LAMBDA W C++

Wyrazenia lambda zostaly po raz pierwszy wprowadzone w
standardzie C++1 1.

B Woyrazenia lambda w jezyku C++ s3 takimi anonimowymi
obiektami funkcyjnymi — s3 podobne do zwyktych funkgji i
mozna je pamieta¢ w zmiennych albo przekazywac do funkcji
jako argumenty.

B Najczesciej wyrazenie lambda pozwala zdefiniowac anonimowa
funkcje, a doktadniej obiekt funkcyjny, w miejscu uzycia.

B Woyrazenia lambda posiadaja swoja tres¢, w ktérym moga
realizowac jakies$ obliczenia; moga przyjmowac argumenty oraz
zwracac wartosci.

KOPIOWANIE WYRAZEN LAMBDA

B Wyrazenie lambda jest takim elementem jezyka C++ bez ktorego
mozna tworzy¢ oprogramowanie, jednak wymaga to duzo wiece;j
kodu — lambdy upraszczaja zapis i powoduja, ze kod staje sie
przejrzysty i czytelny.

B Funkcje lambda to anonimowe obiekty funkcyjne.

B Przykiad:
auto £ = [] (int x, int y) { return x + vy; }

B Lambdy nie posiadaja ani konstruktora domysinego ani operatora
przypisania ale posiadaja konstruktor kopiujacy (bez
zastosowania).

WYRAZENIA LAMBDA W C++

Lambde mozna traktowac jak anonimowa funkcje.

B Giowne zastosowanie funkcji lambda to ich uzycie jako
argumentu sterujacego obliczeniami w
zaimplementowanych algorytmach.

B Wyrazenie lambda jest uzywane wszedzie tam gdzie jest
potrzebne jakies kryterium (najczesciej predykatowe) w
formie funkcji — gtowne zastosowanie to algorytmy z
bibiolteki STL, jak na przyktad sort albo find (plik
naglowkowy <algorithm>).

B Wyrazenie lambda jest wygodnym sposobem definiowania
anonimowego obiektu funkcyjnego w miejscu uzycia.

BUDOWA WYRAZEN LAMBDA

B Wyrazenie lambda w C++ skfada sie z 5 elementdw, z czego czesc jest
opcjonalna:

B [] - kwadratowe nawiasy oznaczaja poczatek wyrazenia lambda; miedzy te
nawiasy mozna wpisac liste przechwytywanych nazw zewnetrznych;

B () - nawiasy okragte, analogicznie jak przy zwyktej funkcji, zawieraja
argumenty, jakie ma przyjmowac wyrazenie lambda (opcjonalne);

B atrybuty wyrazenia lambda — z mozliwych atrybutow najistotniejszy jest
mutable, ktory sprawia ze zmienne przechwycone przez wartos¢ moga

by¢ modyfikowane wewnatrz ciata wyrazenia (opcjonalne);
B ->T - wartosc typu T zwracana przez wyrazenie lambda (opcjonalne)

B {} - tres¢ wyrazenia lambda, czyli kod do wykonania gdy wyrazenie zostanie
wywofane.

B Najprostsza lambda: [] { }

WYRAZENIA LAMBDA

B Mozna utworzyc obiekt funkcyjny anonimowego typu reprezentujacy
lambde :
auto lambda = [] (..)—>.{ .. };
Do takiej lambdy mozna sie potem odwotac jak do funkg;ji:
lambda (...) ;

B Przykfad:
vector<int> v {9, 4, 1, 6, 8};
bool sensitive = true;
// ..
auto lambda =
[sensitive] (int x, 1int vy)
{ return sensitive ? x<y : abs(x) < abs(y);
}
// ..

sort (v.begin(), v.end(), lambda);

PROSTE PRZYKLADY WYRAZEN LAMBDA

Przyktad |: szescian liczby typu int (zmienna funkcyjna)
auto kw = [] (int x){ return x * x * x; };

cout << kw(5) << endl;

B Przykfad 2: kwadrat liczby typu int (wywotanine funkcji)
cout << [](int x){ return x * x; } (7)
<< endl;

PRZECHWYTYWANIE NAZW W WYRAZENIACH

LAMBDA

B Dostep do lokalnych zmiennych lub pél w obiekcie okresla sie w funkcji lambda
za pomoca domkniecia, czyli wewnatrz poczatkowych nawiasow kwadratowych
[1 na poczatku definiciji.

B Domkniecie puste [] oznacza, ze funkcja lambda nie potrzebuje dostepu do
zmiennych z lokalnego srodowiska (zdefiniowanych poza funkcja lambda).

B Domkniecie [&] oznacza, ze wszystkie zmienne z lokalnego srodowiska sa
dostepne przez referencje.

B Domkniecie [=] oznacza, ze wszystkie zmienne z lokalnego srodowiska s3
dostepne przez wartosc (kopiowanie wartosci nastepuje w miejscach, w ktorych
funkcja lambda odwotuje sie do zewnetrznych zmiennych); nie wolno zmieniac
wartosci skopiowanych zmiennych.

B Zmienne przechwycone przez wartosc s3 state, chyba ze lambda zostata
utworzona z atrybutem mutable.

B W domknieciu mozna umiesci¢ liste zmiennych zewnetrznych, z ktorych funkcja
lambda moze korzystac, na przyktad:
int x, vy;
/]
[x, &y] (..) { return ..; }

TYPWYNIKU W WYRAZENIU LAMBDA

B Funkcja lambda okresla typ zwracanego wyniku za pomoca
frazy -> TYP.

B Przyktad:
[] (1nt x, 1nt y) -> 1int
{ int z = x * x; return z + vy + 1; }

B Jesli ciato funkcji lambda skiada sie z jednej instrukgji
return, to typ zwracanego wyniku bedzie wydedukowany
za pomocg decltype () (mozne wtedy pominac fraze —>
TYP).

B Przykfad:
[] (int x, int y) // -> decltype (x*x+y+1)
{ return x * x + vy + 1; }

SZABLON FUNCTION<>

B W pliku nagtdbwkowym <functional> jest zdefiniowany szablon klasy
function<> — uniwersalne polimorficzne opakowanie dla funkgji.

B Instancja klasy function<> moze przechowywac i kopiowa¢ dowolny obiekt
konstruowany przez kopiowanie oraz uruchamiac¢ zdefiniowana funkcjonalnosc
(funkcje, wyrazenia lambda, wyrazenia zbindowane lub inne obiekty funkcyjne).

B Lambde mozna umiesci¢ w obiekcie klasy function<>.
B Przykfad:
function<int (int, 1int)> f =
[] (int x, int y) { return x * vy; }

SZABLON FUNCTION<>

#include <functional> // std::function, std::negate

// a function:
int half(int x) {return x/2;}
// a function object class:
struct third t {
int operator () (int x) {return x/3;}

b

std::function<int (int)> fnl = half; // function
std::function<int (int)> fn2 = ½ // function pointer
std::function<int (int)> fn3 = third t(); // function object

std::function<int (int)> fn4

[]1(int x) {return x/4;}; // lambda expression

std::function<int (int)> £nb5

std: :negate<int> () ; // standard function object

REKURENCY]NE LAMBDY W C++

B Aby mozna byto zrobi¢ wywofanie rekurencyjne w lambdzie, nalezy
w liscie przechwytywanych nazw umiesci¢ nazwe lambdy z
referencja.

B Przykfad:
function<void (int)> helloworld =

[&helloworld] (int count) {
cout << "Hello world" << endl;

1f (count > 1) helloworld(count - 1);
b

REKURENCY]NE LAMBDY W C++

B Niestety, nie mozemy przechwyci¢ zmiennej zadeklarowanej za pomoca auto w

jej wiasnej inicjalizacji. Przykitad:

~11+ 11 p— [cF11n1 (1 ~+ <z \ 1 [
auacCu L Ull LLXLL/[J.].J _l_llk_, A/ L 11 C l
- F (sr —— N Ay Nz — 1) rat 111+ n 1 e
J I \A \J L PN J_/ [B PR WPl U I B A L 7
aAalan rrat 11 v £ ([~ 1) L a1~ [~z 2\ .
- Lo Lo L UL 1l L L\ L) U L LA |/

B Lambdy w C ++ s3 unikatowe i nie maja nazwy, wiec problemem jest odwotanie

sie do funktora, ktéry kompilator wtasnie tworzy.

B Nie mozemy rowniez uzyc¢ stowa kluczowego this wewnatrz tresci lambdy.

REKURENCY]NE LAMBDY W C++

B Aby przechwyci¢ zmienna zadeklarowana za pomoca auto mozna

przekaza¢ jako parametr referencje do lambdy. Przykiad:
auto fib = [] (int x, const auto &f) -> int {

1f(x == || x == 1) return 1;
else return f(x - 1, £) + £f(x - 2, f);

b

fib (12, fib);

B Kod powyzszy jest brzydki, ale sie¢ kompiluje.VWywofanie lambdy
musi niestety zawiera¢ dodatkowy parametr (referencje do same;j

lambdy).

REKURENCY]NE LAMBDY W C++

B Aby ukry¢ odwotanie do tej samej lambdy mozna zrobic proste
opakowanie (lambda w lambdzie). Przykiad:
auto fib = [] (int64 t x) {

auto fi = [] (int x, const auto &f)->int
{
if(x == || x == 1) return x;
else return £f(x - 1, £f) + f£f(x - 2,
)
b
return fi(x, £f1i);
s
fib (12) ;

B Niestety powyzszy kod nadal wyglada brzydko, ale wywotanie
lambdy jest duzo tadniejsze (bez dodatkowych parametrow).

LITERATURA [PL]

B Woyrazenia lambda C++
https://binarnie.pl/wyrazenia-lambda-c/

B Woyrazenie lambda A w C++
https://blog.artmetic.pl/wyrazenie-lambda-%CE%BB-w-c/

B Woyrazenia lambda — uzyteczna nowos¢ C++1 |

https://www.kompikownia.pl/index.php/2018/12/15/wyrazenia-
lambda-uzyteczna-nowosc-cl |/

B Woyrazenia lambda C++1 |

https://cppOx.pl/kursy/Kurs-C++/Poziom-5/VWyrazenia-lambda-
C++11/591

https://binarnie.pl/wyrazenia-lambda-c/
https://blog.artmetic.pl/wyrazenie-lambda-%CE%BB-w-c/
https://www.kompikownia.pl/index.php/2018/12/15/wyrazenia-lambda-uzyteczna-nowosc-c11/
https://www.kompikownia.pl/index.php/2018/12/15/wyrazenia-lambda-uzyteczna-nowosc-c11/
https://cpp0x.pl/kursy/Kurs-C++/Poziom-5/Wyrazenia-lambda-C++11/591
https://cpp0x.pl/kursy/Kurs-C++/Poziom-5/Wyrazenia-lambda-C++11/591

	Slajd 1: Kurs języka C++
	Slajd 2: Spis treści
	Slajd 3: Obiekty funkcyjne
	Slajd 4: Obiekt funkcyjny jako kryterium sortowania
	Slajd 5: Funktory i predykaty
	Slajd 6: Obiekt funkcyjny ze stanem wewnętrznym
	Slajd 7: Algorytm for_each
	Slajd 8: Algorytm for_each
	Slajd 9: Algorytm for_each dla funktora 1-argumentowego
	Slajd 10: Predykaty
	Slajd 11: Predefiniowane obiekty funkcyjne
	Slajd 12: Adaptator bind()
	Slajd 13: Adaptator bind()
	Slajd 14: Rachunek lambda
	Slajd 15: Wyrażenia lambda w C++
	Slajd 16: Kopiowanie wyrażeń lambda
	Slajd 17: Wyrażenia lambda w C++
	Slajd 18: Budowa wyrażeń lambda
	Slajd 19: Wyrażenia lambda
	Slajd 20: Proste przykłady wyrażeń lambda
	Slajd 21: Przechwytywanie nazw w wyrażeniach lambda
	Slajd 22: Typ wyniku w wyrażeniu lambda
	Slajd 23: Szablon function<>
	Slajd 24: Szablon function<>
	Slajd 25: Rekurencyjne lambdy w C++
	Slajd 26: Rekurencyjne lambdy w C++
	Slajd 27: Rekurencyjne lambdy w C++
	Slajd 28: Rekurencyjne lambdy w C++
	Slajd 29: Literatura [pl]

