
KURS JĘZYKA C++
14. OBIEKTY FUNKCYJNE I LAMBDY

SPIS TREŚCI

 Funktory i predykaty

 Predefiniowane obiekty funkcyjne

 Funkcje lambda

OBIEKTY FUNKCYJNE

 Obiekt funkcyjny to obiekt, w którym jest zdefiniowany
operator wywołania funkcji operator().

 Obiekty funkcyjne są obiektami działającymi jak funkcje.

 Zalety obiektów funkcyjnych:

 posiadają stan (pamięć),

 mają własny typ (mogą być parametrami szablonów),

 działają co najmniej tak szybko jak wskaźniki do funkcji.

OBIEKT FUNKCYJNY JAKO KRYTERIUM

SORTOWANIA

class Person {

public:

string firstname() const;

string lastname() const;

…

};

struct PersonSortCriterion {

bool operator() (const Person &p1, const Person &p2) const {

return p1.lastname()<p2.lastname() or

p1.lastname()==p2.lastname() and p1.firstname()<p2.firstname();

}

};

…

set<Person, PersonSortCriterion> coll;

FUNKTORY I PREDYKATY

 Funktor to obiekt klasy z operatorem wywołania

funkcji.

 Predykat to funktor, który wyniku zwraca wartość

boolowską.

 Obiekt funkcji łączący dwa obiekty funkcyjne nosi nazwę

adaptatora funktorów.

OBIEKT FUNKCYJNY ZE STANEM

WEWNĘTRZNYM

class IntSequence {

private:

int value;

public:

// konstruktor

IntSequence (int init = 0) : value(init) {}

// operator wywołania funkcji

int operator() () {

return ++value;

}

};

ALGORYTM FOR_EACH

 Algorytm for_each aplikuje funkcje zdefiniowaną w

obiekcie funkcyjnym do wszystkich elementów kolekcji.

 Algorytm for_each zwraca swój obiekt funkcyjny.

 Stan danego obiektu funkcyjnego możemy więc

sprawdzić, analizując wartość zwróconą przez algorytm
for_each.

ALGORYTM FOR_EACH

class MeanValue {

int num = 0; // number of elements

long sum = 0; // sum of all element values

public:

// MeanValue() : num(0), sum(0) {}

void operator() (int elem) {

++num; // increment count

sum += elem; // add value

}

double value () {

return static_cast<double>(sum) / num;

}

};

…

vector<int> coll = /* … */;

MeanValue mv =

for_each(coll.begin(), coll.end(), MeanValue());

cout << mv.value() << endl;

ALGORYTM FOR_EACH

DLA FUNKTORA 1-ARGUMENTOWEGO

template<typename elementType>

struct DisplayElement {

void operator () (const elementType &element) const {

cout << element << ' ';

}

};

…

vector<int> vec;

…

for_each (vec.begin(), vec.end(), DisplayElement<int>());

cout << endl;

PREDYKATY

 Predykaty są to funkcje lub obiekty funkcyjne zwracające

wartość boolowską albo wartość, którą można niejawnie
przekonwertować na typ bool.

 Predykaty są często wewnętrznie kopiowane przez

algorytmy STL – dlatego predykat powinien być

bezstanowy (predykat nie powinien zmieniać swojego

stanu w wyniku wywołania, a kopia predykatu powinna

posiadać ten sam stan co oryginał).

 W przypadku lambd problem ten nie występuje, a to

dzięki możliwości współdzielenia stanu pomiędzy

wszystkimi kopiami obiektu funkcyjnego.

PREDEFINIOWANE OBIEKTY FUNKCYJNE

 Stosowanie predefiniowanych obiektów funkcyjnych wymaga
włączenia pliku nagłówkowego <functional>.

 Arytmetyczne obiekty funkcyjne: negate<>, plus<>,

minus<>, multiplies<>, divides<>, modulus<>.

 Obiekty funkcyjne porównujące: less<> (domyślne

kryterium przy sortowaniu czy wyszukiwaniu binarnym),
greater<>, less_equal<>, greater_equal<>,

equal_to<>, not_equal_to<>.

 Obiekty funkcyjne do tworzenia wyrażeń logicznych:
logical_not<>, logical_and<>, logical_or<>.

 Obiekty funkcyjne używające operatorów bitowych:
bit_not<>, bit_and<>, bit_xor<>, bit_or<>.

ADAPTATOR BIND()

 Adaptator funkcji jest to obiekt funkcyjny, który umożliwia
składanie obiektów funkcyjnych ze sobą nawzajem, z
określonymi wartościami lub ze specjalnymi funkcjami.

 Adaptator wiązania argumentów bind() pozwala na:

 adaptację i kompozycję nowych obiektów funkcyjnych z
istniejących i predefiniowanych obiektów funkcyjnych;

 wywoływanie funkcji globalnych;

 wywoływanie funkcji składowych na rzecz obiektów, wskaźników
do obiektów i inteligentnych wskaźników do obiektów.

 Argumenty przekazane do wywołania obiektu wiążącego są
w wyrażeniu wiążącym widoczne jako symbole zastępcze
std::placeholders::_1,
std::placeholders::_2 itd.

ADAPTATOR BIND()

auto plus10 = bind(

plus<int>(),

std::placeholders::_1,

10);

cout << "+10: " << plus10(7) << endl;

auto inversDiv = bind(

divides<double>(),

std::placeholders::_2,

std::placeholders::_1);

cout << "invdiv: " << inversDiv(49,7) << endl;

RACHUNEK LAMBDA

 Nazwa wywodzi się od rachunku lambda stworzonego przez Alonzo Churcha w

1932 roku, gdzie symbol greckiej litery λ oznaczał wszystko co można wywołać

przez funkcje.

 Rachunek lambda okazał się być modelem obliczeń równoważnym maszynie

Turinga.

 Rachunek lambda bez typów stanowił inspirację dla powstania programowania

funkcyjnego. Rachunek lambda z typami jest podstawą dzisiejszych systemów

typów w językach programowania.

WYRAŻENIA LAMBDA W C++

 Wyrażenia lambda zostały po raz pierwszy wprowadzone w

standardzie C++11.

 Wyrażenia lambda w języku C++ są takimi anonimowymi

obiektami funkcyjnymi – są podobne do zwykłych funkcji i

można je pamiętać w zmiennych albo przekazywać do funkcji

jako argumenty.

 Najczęściej wyrażenie lambda pozwala zdefiniować anonimową

funkcję, a dokładniej obiekt funkcyjny, w miejscu użycia.

 Wyrażenia lambda posiadają swoją treść, w którym mogą

realizować jakieś obliczenia; mogą przyjmować argumenty oraz

zwracać wartości.

KOPIOWANIE WYRAŻEŃ LAMBDA

 Wyrażenie lambda jest takim elementem języka C++ bez którego

można tworzyć oprogramowanie, jednak wymaga to dużo więcej

kodu – lambdy upraszczają zapis i powodują, że kod staje się

przejrzysty i czytelny.

 Funkcje lambda to anonimowe obiekty funkcyjne.

 Przykład:
auto f = [] (int x, int y) { return x + y; }

 Lambdy nie posiadają ani konstruktora domyślnego ani operatora

przypisania ale posiadają konstruktor kopiujący (bez

zastosowania).

WYRAŻENIA LAMBDA W C++

 Lambdę można traktować jak anonimową funkcję.

 Główne zastosowanie funkcji lambda to ich użycie jako

argumentu sterującego obliczeniami w

zaimplementowanych algorytmach.

 Wyrażenie lambda jest używane wszędzie tam gdzie jest

potrzebne jakieś kryterium (najczęściej predykatowe) w

formie funkcji – główne zastosowanie to algorytmy z
bibiolteki STL, jak na przykład sort albo find (plik

nagłówkowy <algorithm>).

 Wyrażenie lambda jest wygodnym sposobem definiowania

anonimowego obiektu funkcyjnego w miejscu użycia.

BUDOWA WYRAŻEŃ LAMBDA

 Wyrażenie lambda w C++ składa się z 5 elementów, z czego część jest

opcjonalna:

 [] - kwadratowe nawiasy oznaczają początek wyrażenia lambda; między te

nawiasy można wpisać listę przechwytywanych nazw zewnętrznych;

 () - nawiasy okrągłe, analogicznie jak przy zwykłej funkcji, zawierają

argumenty, jakie ma przyjmować wyrażenie lambda (opcjonalne);

 atrybuty wyrażenia lambda – z możliwych atrybutów najistotniejszy jest
mutable, który sprawia że zmienne przechwycone przez wartość mogą

być modyfikowane wewnątrz ciała wyrażenia (opcjonalne);

 -> T – wartość typu T zwracana przez wyrażenie lambda (opcjonalne)

 {} - treść wyrażenia lambda, czyli kod do wykonania gdy wyrażenie zostanie

wywołane.

 Najprostsza lambda: []{}

WYRAŻENIA LAMBDA

 Można utworzyć obiekt funkcyjny anonimowego typu reprezentujący
lambdę :
auto lambda = [](…)->…{ … };

Do takiej lambdy można się potem odwołać jak do funkcji:
lambda(…);

 Przykład:
vector<int> v {9, 4, 1, 6, 8};

bool sensitive = true;

// …

auto lambda =

[sensitive] (int x, int y)

{ return sensitive ? x<y : abs(x) < abs(y);

}

// …

sort(v.begin(), v.end(), lambda);

PROSTE PRZYKŁADY WYRAŻEŃ LAMBDA

 Przykład 1: sześcian liczby typu int (zmienna funkcyjna)
auto kw = [](int x){ return x * x * x; };

…

cout << kw(5) << endl;

 Przykład 2: kwadrat liczby typu int (wywołanine funkcji)
cout << [](int x){ return x * x; }(7)

<< endl;

PRZECHWYTYWANIE NAZW W WYRAŻENIACH

LAMBDA

 Dostęp do lokalnych zmiennych lub pól w obiekcie określa się w funkcji lambda
za pomocą domknięcia, czyli wewnątrz początkowych nawiasów kwadratowych
[] na początku definicji.

 Domknięcie puste [] oznacza, że funkcja lambda nie potrzebuje dostępu do
zmiennych z lokalnego środowiska (zdefiniowanych poza funkcją lambda).

 Domknięcie [&] oznacza, że wszystkie zmienne z lokalnego środowiska są
dostępne przez referencję.

 Domknięcie [=] oznacza, że wszystkie zmienne z lokalnego środowiska są
dostępne przez wartość (kopiowanie wartości następuje w miejscach, w których
funkcja lambda odwołuje się do zewnętrznych zmiennych); nie wolno zmieniać
wartości skopiowanych zmiennych.

 Zmienne przechwycone przez wartość są stałe, chyba że lambda została
utworzona z atrybutem mutable.

 W domknięciu można umieścić listę zmiennych zewnętrznych, z których funkcja
lambda może korzystać, na przykład:
int x, y;
// …
[x, &y] (…) { return …; }

TYP WYNIKU W WYRAŻENIU LAMBDA

 Funkcja lambda określa typ zwracanego wyniku za pomocą
frazy -> TYP.

 Przykład:
[](int x, int y) -> int

{ int z = x * x; return z + y + 1; }

 Jeśli ciało funkcji lambda składa się z jednej instrukcji
return, to typ zwracanego wyniku będzie wydedukowany
za pomocą decltype() (możne wtedy pominąć frazę ->
TYP).

 Przykład:
[](int x, int y) // -> decltype(x*x+y+1)

{ return x * x + y + 1; }

SZABLON FUNCTION<>

 W pliku nagłówkowym <functional> jest zdefiniowany szablon klasy

function<> – uniwersalne polimorficzne opakowanie dla funkcji.

 Instancja klasy function<> może przechowywać i kopiować dowolny obiekt

konstruowany przez kopiowanie oraz uruchamiać zdefiniowaną funkcjonalność

(funkcje, wyrażenia lambda, wyrażenia zbindowane lub inne obiekty funkcyjne).

 Lambdę można umieścić w obiekcie klasy function<>.

 Przykład:
function<int(int, int)> f =

[] (int x, int y) { return x * y; }

SZABLON FUNCTION<>

#include <functional> // std::function, std::negate

// a function:

int half(int x) {return x/2;}

// a function object class:

struct third_t {

int operator()(int x) {return x/3;}

};

…

std::function<int(int)> fn1 = half; // function

std::function<int(int)> fn2 = ½ // function pointer

std::function<int(int)> fn3 = third_t(); // function object

std::function<int(int)> fn4 = [](int x){return x/4;}; // lambda expression

std::function<int(int)> fn5 = std::negate<int>(); // standard function object

REKURENCYJNE LAMBDY W C++

 Aby można było zrobić wywołanie rekurencyjne w lambdzie, należy

w liście przechwytywanych nazw umieścić nazwę lambdy z

referencją.

 Przykład:
function<void (int)> helloworld =

[&helloworld] (int count) {

cout << "Hello world" << endl;

if (count > 1) helloworld(count - 1);

};

REKURENCYJNE LAMBDY W C++

 Niestety, nie możemy przechwycić zmiennej zadeklarowanej za pomocą auto w

jej własnej inicjalizacji. Przykład:
auto fun = [&fun] (int x) -> int {

if (x == 0 or x == 1) return 1;

else return fib(x - 1) + fib(x - 2);

}

 Lambdy w C ++ są unikatowe i nie mają nazwy, więc problemem jest odwołanie

się do funktora, który kompilator właśnie tworzy.

 Nie możemy również użyć słowa kluczowego this wewnątrz treści lambdy.

REKURENCYJNE LAMBDY W C++

 Aby przechwycić zmienną zadeklarowaną za pomocą auto można

przekazać jako parametr referencję do lambdy. Przykład:
auto fib = [] (int x, const auto &f) -> int {

if(x == 0 || x == 1) return 1;

else return f(x - 1, f) + f(x - 2, f);

};

…

fib(12, fib);

 Kod powyższy jest brzydki, ale się kompiluje. Wywołanie lambdy

musi niestety zawierać dodatkowy parametr (referencję do samej

lambdy).

REKURENCYJNE LAMBDY W C++

 Aby ukryć odwołanie do tej samej lambdy można zrobić proste
opakowanie (lambda w lambdzie). Przykład:
auto fib = [] (int64_t x) {

auto fi = [] (int x, const auto &f)->int

{

if(x == 0 || x == 1) return x;

else return f(x - 1, f) + f(x - 2,

f);

};

return fi(x, fi);

};

…

fib(12);

 Niestety powyższy kod nadal wygląda brzydko, ale wywołanie
lambdy jest dużo ładniejsze (bez dodatkowych parametrów).

LITERATURA [PL]

 Wyrażenia lambda C++

https://binarnie.pl/wyrazenia-lambda-c/

 Wyrażenie lambda λ w C++

https://blog.artmetic.pl/wyrazenie-lambda-%CE%BB-w-c/

 Wyrażenia lambda – użyteczna nowość C++11

https://www.kompikownia.pl/index.php/2018/12/15/wyrazenia-

lambda-uzyteczna-nowosc-c11/

 Wyrażenia lambda C++11

https://cpp0x.pl/kursy/Kurs-C++/Poziom-5/Wyrazenia-lambda-

C++11/591

https://binarnie.pl/wyrazenia-lambda-c/
https://blog.artmetic.pl/wyrazenie-lambda-%CE%BB-w-c/
https://www.kompikownia.pl/index.php/2018/12/15/wyrazenia-lambda-uzyteczna-nowosc-c11/
https://www.kompikownia.pl/index.php/2018/12/15/wyrazenia-lambda-uzyteczna-nowosc-c11/
https://cpp0x.pl/kursy/Kurs-C++/Poziom-5/Wyrazenia-lambda-C++11/591
https://cpp0x.pl/kursy/Kurs-C++/Poziom-5/Wyrazenia-lambda-C++11/591

	Slajd 1: Kurs języka C++
	Slajd 2: Spis treści
	Slajd 3: Obiekty funkcyjne
	Slajd 4: Obiekt funkcyjny jako kryterium sortowania
	Slajd 5: Funktory i predykaty
	Slajd 6: Obiekt funkcyjny ze stanem wewnętrznym
	Slajd 7: Algorytm for_each
	Slajd 8: Algorytm for_each
	Slajd 9: Algorytm for_each dla funktora 1-argumentowego
	Slajd 10: Predykaty
	Slajd 11: Predefiniowane obiekty funkcyjne
	Slajd 12: Adaptator bind()
	Slajd 13: Adaptator bind()
	Slajd 14: Rachunek lambda
	Slajd 15: Wyrażenia lambda w C++
	Slajd 16: Kopiowanie wyrażeń lambda
	Slajd 17: Wyrażenia lambda w C++
	Slajd 18: Budowa wyrażeń lambda
	Slajd 19: Wyrażenia lambda
	Slajd 20: Proste przykłady wyrażeń lambda
	Slajd 21: Przechwytywanie nazw w wyrażeniach lambda
	Slajd 22: Typ wyniku w wyrażeniu lambda
	Slajd 23: Szablon function<>
	Slajd 24: Szablon function<>
	Slajd 25: Rekurencyjne lambdy w C++
	Slajd 26: Rekurencyjne lambdy w C++
	Slajd 27: Rekurencyjne lambdy w C++
	Slajd 28: Rekurencyjne lambdy w C++
	Slajd 29: Literatura [pl]

