
KURS JĘZYKA C++
9. KONWERSJE

SPIS TREŚCI

 Tradycyjne operatory rzutowania

 Konstruktory konwertujące

 Operatory konwersji

 Rzutowanie static_cast

 Rzutowanie const_cast

 Rzutowanie reinterpret_cast

 Rzutowanie dynamic_cast

 RTTI – operator typeid()

 Automatyczne określanie typu (auto)

 Wydobycie typu wyrażenia (decltype)

RZUTOWANIE

 Rzutowanie to zmiana typu danej (powstaje nowy obiekt

innego typu) albo zmiana interpretacji danych (obiekt się nie

zmienia ale traktujemy go w kategoriach innego typu).

 W C++ w stosunku do C została zaostrzona kontrola typów –

na przykład, gdy przekażemy funkcji zmienną o innym typie

dostaniemy błąd od kompilatora (główna zmiana dotyczy
wskaźników rzutowanych na typ void* i w drugą stronę).

TRADYCYJNE

OPERATORY RZUTOWANIA

 Tradycyjne operatory rzutowania jawnie przekształcają
typ danych.

 Tradycyjne operatory konwersji mogą przyjmować dwie
formy:
(typ)wyrażenie
typ(wyrażenie)
Przykłady:
(int)3.1415926 // forma rzutowania
double(7*11+5) // forma konstruktorowa

 Operacja jawnej konwersji typów jest niebezpieczna i
należy ją stosować bardzo ostrożnie (tylko w razie
konieczności).

 Zaleca się używać konstruktorowej formy zamiast
rzutowania tradycyjnego.

TRADYCYJNE OPERATORY RZUTOWANIA

 Kompilator umie przekształcać na siebie wszystkie typy
podstawowe.

 Operator rzutowania eliminuje ostrzeżenia kompilatora
przy przekształcaniu typów podstawowych.

 Kompilator nie będzie generował ostrzeżeń w przypadku
konwersji na typach podstawowych, w których mamy do
czynienia z promocją (konwersje niejawne).

 Przykłady:
const double e = 2.71828182845904523;
int x = (int)e; // wymagana konwersja
double y = 2*x+1; // konwersja niejawna

KONSTRUKTORY KONWERTUJĄCE

 Konstruktor konwertujący to konstruktor bez deklaratora
explicit, który można wywołać z jednym parametrem:

K::K (typ x) {/*…*/} // typ!=K

 Konstruktorów konwertujących może być wiele w jednej

klasie.

 Deklarator explicit zabrania używać konstruktora

konwertującego niejawnie. Przykład:
class K {

explicit K(typ x);

// …

};

KONSTRUKTORY KONWERTUJĄCE

 Przykład konstruktora konwertującego i jego niejawnego użycia:

class zespolona {
double re, im;

public:
zespolona (double r=0, double i=0);
// …

};
// …
zespolona a;
zespolona b = zespolona(1.2); // jawna konwersja
zespolona c = 3.4; // niejawna konwersja
zespolona d = (zespolona)5.6; // rzutowanie
zespolona e = static_cast<zespolona>(7.8);
zespolona f(9.0, 0.9);

OPERATORY KONWERSJI

 Operator konwersji ma następującą postać:
operator typ ();

 Operator konwersji ma pustą listę argumentów i nie ma określonego
typu wyniku (typ wyniku jest określony poprzez nazwę tego operatora).

 Operator konwersji musi być funkcją składową w klasie.

 Operator konwersji jest dziedziczony.

 Operator konwersji może być wirtualny.

 Operatorów konwersji może być wiele w jednej klasie.

 Przy operatorach konwersji można użyć słowa kluczowego explicit
aby uniknąć konwersji niejawnej.

OPERATOR STATIC_CAST

 Rzutowanie static_cast działa tak jak rzutowanie tradycyjne –
jeśli jest zdefiniowana operacja rzutowania to zostanie ona
wykonana.

 Operator rzutowania static_cast ma następującą postać:
static_cast<typ>(wyrażenie)

 Rzutowania static_cast używa się do:

 konwersji podstawowych typów liczbowych,

 wyliczenia do typu całkowitego,

 konwersji typów pokrewnych (zmiana typu wskaźnikowego czy
referencyjnego w tej samej hierarchii klas – rzutowanie do góry
albo w dół hierarchii dziedziczenia),

 konwersji zdefiniowanych przez użytkownika.

 Typ obiektu na który rzutujemy i z którego rzutujemy musi być
znany w momencie kompilacji.

 Operator rzutowania static_cast działa na etapie kompilacji
za pomocą dostępnych operatorów konwersji.

RZUTOWANIE CONST_CAST

 Rzutowanie to pozwala dodać albo zlikwidować deklarator
const lub volatile w typie wyrażenia (ale nie pozwala

zmienić typu głównego).

 Operator rzutowania const_cast ma następującą postać:

const_cast<typ>(wyrażenie)

przy czym typ powinno być wskaźnikiem, referencją lub

wskaźnikiem do składowej.

 Operator rzutowania const_cast działa na etapie

kompilacji.

RZUTOWANIE REINTERPRET_CAST

 Operator rzutowania reinterpret_cast ma następującą postać:

reinterpret_cast<typ>(wyrażenie)

przy czym typ powinno być wskaźnikiem, referencją lub typem porządkowym

(znaki, liczby całkowite, typ boolowski, wyliczenia).

 Rzutowanie to ma zmienić interpretację typu wyrażenia (kompilator nie

sprawdza sensu tego rzutowania).

 Operator rzutowania reinterpret_cast tworzy wartość nowego typu,

który ma ten sam wzorzec bitowy co podane wyrażenie.

 Rzutowanie to nie gwarantuje przenośności.

 Operator rzutowania reinterpret_cast działa na etapie kompilacji.

RZUTOWANIE DYNAMIC_CAST

 Operator rzutowania dynamic_cast ma następującą postać:
dynamic_cast<typ>(wyrażenie)
przy czym wyrażenie powinno być wskaźnikiem lub referencją do typu
polimorficznego.

 Rzutowanie to wykonuje się w trakcie działania programu.

 dynamic_cast<T*>(p) zwraca wskaźnik typu T* gdy obiekt wskazywany
przez p jest typu T lub ma unikatową klasę bazową typu T (w przeciwnym
przypadku zwraca nullptr).

 dynamic_cast<T&>(r) zwraca referencję typu T& gdy obiekt wskazywany
przez r jest typu T lub ma unikatową klasę bazową typu T (w przeciwnym
przypadku rzuca wyjątek bad_cast).

RTTI
 Mechanizm dynamicznego rozpoznawania typów, nazywany

RTTI (ang. Run-Time Type Identification), obejmuje dwa główne

zagadnienia:

 rozpoznanie typu w celu sprawdzenia poprawności i wykonania

rzutowania (konwersji) – do realizacji tego celu służy operator
dynamic_cast<>;

 rozpoznanie typu w celu porównania go z typem innego obiektu –
do realizacji tego celu służy operator typeid.

 Aby używać operatora typeid należy włączyć plik

nagłówkowy <typeinfo> – wynikiem wyrażenia typeid

jest referencja do obiektu type_info, który jest

zdefiniowany właśnie w tym pliku.

 Wyrażenia podane jako argument typeid nie ulegają

konwersjom.

RTTI
 Argumentem operatora typeid może być nazwa typu lub

dowolne wyrażenie.

 Operator typeid zwraca identyfikator typu argumentu, który jest

obiektem klasy type_info – klasa ta, poprzez przeciążenie

operatorów == i != zapewnia możliwość porównywania obiektów

reprezentujących typy.

 Przykłady:
double x = 1.618;

if (typeid(x) == typeid(double)) ... // true

if (typeid(x) == typeid(16.0)) ... // true

if (typeid(x) == typeid(2)) ... // false

if (typeid(x) != typeid(4)) ... // true

if (typeid(x) != typeid(int)) ... // true

RTTI
 Klasa type_info posiada metodę name, która zwraca C-napis

zawierający nazwę typu.

 Tekst zwracany przez funkcję name() może być różny w
zależności od użytego kompilatora.

 Gdy argumentem typeid jest typ niepolimorficzny, to argument
jest nieewaluowany, czyli wyrażenie nie jest wyliczane przez
program (możemy na przykład zrobić dereferencję pustego
wskaźnika):
auto& info = typeid(*((B*)nullptr));

std::cout << info.name() << std::endl;

 Lambdy nie mogą być używane (aż do standardu C++20) w
nieewaluowanych kontekstach. Od C++20 lambdy, które mają
pustą listę przechwytywania mogą być używane w
nieewaluowanych kontekstach.

RTTI

 Funkcja before() o prototypie

bool before(const type_info &rhs) const noexcept;

pozwala na uporządkowanie typów – uporządkowanie typów jest zależne

od implementacji, a może się zmienić nawet przy ponownym uruchomieniu

programu.

 funkcja hash_code() o prototypie

size_t hash_code() const noexcept;

zwraca hash dla danego typu, który będzie unikalny dla danego typu (co

powoduje, że będziemy mogli go używać na przykład jako klucz w

kontenerze). Warto zwrócić uwagę, że hash może być różny dla tego

samego typu podczas różnych wykonań programu.

AUTOMATYCZNE OKREŚLANIE TYPU

 W definicji zmiennej z jawnym inicjowaniem można użyć słowa kluczowego auto –

można w ten sposób utworzyć zmienną o typie takim, jak typ inicjującego wyrażenia.

 Przykład 1:
auto jakasZmienna = L"To jest tekst";

Typ jakasZmienna jest programiście łatwiej napisać słowo auto niż const

wchar_t * (taki jak dla literału tekstowego).

 Przykład 2:
auto innaZmienna =

boost::bind(&Funkcja, _2, _1, Obiekt);

Typem innaZmienna może być cokolwiek zwracanego przez pewną funkcję

szablonową pod boost::bind dla danych argumentów, typ ten jest łatwy do

określenia przez kompilator, natomiast dla użytkownika jest to trudne.

AUTOMATYCZNE OKREŚLANIE TYPU

 Prztkład 3:
Typ auto jest przydatny przy ograniczaniu rozwlekłości kodu.

Zamiast pisać:
for (vector<int>::const_iterator itr = myvec.begin();

itr != myvec.end(); ++itr) …

Programista może użyć krótszego zapisu:
for (auto itr = myvec.begin(); itr != myvec.end();

++itr) …

WYDOBYCIE TYPU WYRAŻENIA

 Operator decltype pozwala na uzyskanie typu wyrażenia.

 Jego głównym przeznaczeniem tego operatora jest programowanie uogólnione,

w którym często trudno określić typy zależne od parametrów szablonu.

 Typ określony za pomocą operatora decltype zgadza się z typem obiektu lub

funkcji zadeklarowanym w kodzie źródłowym.

 Podobnie jak w przypadku operatora sizeof, operand decltype nie jest

wykonywany.

WYDOBYCIE TYPU WYRAŻENIA

 Przykłady:
const int& foo();

int i;

struct A { double x; };

const A *a = new A();

decltype(i) x2; // typ to int

decltype(foo()) x1 = i; // typ to const int&

decltype(a->x) x3; // typ to double

decltype((a->x)) x4; // typ to const double&

Wyrażenie w nawiasie (a->x) nie jest ani id-wyrażeniem ani dostępem do
członków klasy, a stąd nie oznacza nazwanego obiektu. Ponieważ to wyrażenie
jest l-wartością, jego wydedukowany typ jest referencją do typu wyrażenia, czyli
const double&.

	Slajd 1: Kurs języka C++
	Slajd 2: Spis treści
	Slajd 3: Rzutowanie
	Slajd 4: Tradycyjne operatory rzutowania
	Slajd 5: Tradycyjne operatory rzutowania
	Slajd 6: Konstruktory konwertujące
	Slajd 7: Konstruktory konwertujące
	Slajd 8: Operatory konwersji
	Slajd 9: Operator static_cast
	Slajd 10: Rzutowanie const_cast
	Slajd 11: Rzutowanie reinterpret_cast
	Slajd 12: Rzutowanie dynamic_cast
	Slajd 13: RTTI
	Slajd 14: RTTI
	Slajd 15: RTTI
	Slajd 16: RTTI
	Slajd 17: Automatyczne określanie typu
	Slajd 18: Automatyczne określanie typu
	Slajd 19: Wydobycie typu wyrażenia
	Slajd 20: Wydobycie typu wyrażenia

