KURS JEZYKA C++

9. KONWERSJE

SPIS TRESCI

Tradycyjne operatory rzutowania
Konstruktory konwertujace
Operatory konwers;ji

Rzutowanie static cast
Rzutowanie const cast
Rzutowanie reinterpret cast
Rzutowanie dynamic cast

RTTIl — operator typeid ()

Automatyczne okreslanie typu (auto)

Wydobycie typu wyrazenia (decltype)

RZUTOWANIE

B Rzutowanie to zmiana typu danej (powstaje nowy obiekt
innego typu) albo zmiana interpretacji danych (obiekt sie nie
zmienia ale traktujemy go w kategoriach innego typu).

B W C++ w stosunku do C zostata zaostrzona kontrola typow —
na przyktad, gdy przekazemy funkcji zmienng o innym typie
dostaniemy btad od kompilatora (gtéwna zmiana dotyczy
wskaznikow rzutowanych na typ void* i w druga strone).

TRADYCY]NE
OPERATORY RZUTOWANIA

B Tradycyjne operatory rzutowania jawnie przeksztatcaja
typ danych.

B Tradycyjne operatory konwersji moga przyjmowac dwie
formy:
(typ) wyrazenie
typ(wyrazenie)
Przykfady:
(int)3.1415926 // forma rzutowania
double (7*11+5) // forma konstruktorowa

B Operacja jawnej konwersji typow jest niebezpieczna i
nalezy ja stosowac bardzo ostroznie (tylko w razie
koniecznosci).

B Zaleca sie uzywac konstruktorowej formy zamiast
rzutowania tradycyjnego.

TRADYCYJNE OPERATORY RZUTOWANIA

B Kompilator umie przeksztatcac na siebie wszystkie typy
podstawowe.

B Operator rzutowania eliminuje ostrzezenia kompilatora
przy przeksztatcaniu typow podstawowych.

B Kompilator nie bgdzie generowat ostrzezen w przypadku
konwersji na typach podstawowych;

ezynienia-z-promecja (konwersje niejawne).

B Przykfady:
const double e = 2.71828182845904523;
int x = (int)e; // wymagana konwersja
double y = 2*x+1; // konwersja niejawna

KONSTRUKTORY KONWERTUJACE

B Konstruktor konwertujacy to konstruktor bez deklaratora
explicit, ktory mozna wywotac z jednym parametrem:
K::K (typ x) {/*.*/} // typ!=K

B Konstruktorow konwertujacych moze byc wiele w jednej
klasie.

B Deklarator explicit zabrania uzywac konstruktora

konwertujacego niejawnie. Przykifad:
class K {

explicit K(typ x);
// ..
I

KONSTRUKTORY KONWERTUJACE

B Przykfad konstruktora konwertujacego i jego niejawnego uzycia:

class zespolona {
double re, 1im;

public:
zespolona (double r=0, double 1=0);
/..

b

/]

zespolona aj;
zespolona b zespolona(l.2); // jawna konwersja
zespolona c 3.4; // niejawna konwersja
zespolona d (zespolona)5.6; // rzutowanie
zespolona e static cast<zespolona>(7.8);

zespolona £(9.0, 0.9);

OPERATORY KONWERSJI

B Operator konwersji ma nastepujaca postac:
operator typ ();

B Operator konwersji ma pusta liste argumentow i nie ma okreslonego
typu wyniku (typ wyniku jest okreslony poprzez nazwe tego operatora).

B Operator konwersji musi byc¢ funkcja sktadowa w klasie.

B Operator konwersiji jest dziedziczony.

B Operator konwersji moze byc¢ wirtualny.

B Operatoréw konwersji moze byc¢ wiele w jednej klasie.

B Przy operatorach konwersji mozna uzyc¢ stowa kluczowego explicit

aby unikna¢ konwersji niejawnej.

OPERATOR STATIC CAST

B Rzutowanie static cast dziata tak jak rzutowanie tradycyjne —
jesli jest zdefiniowana operacja rzutowania to zostanie ona
wykonana.

B Operator rzutowania static cast ma nastepujaca postac:
static cast<typ>(wyrazenie)

B Rzutowania static cast uzywa sig do:
B konwersji podstawowych typow liczbowych,
B wyliczenia do typu catkowitego,

B konwersji typow pokrewnych (zmiana typu wskaznikowego czy
refereni:jyjnego w tej same] hierarchii klas — rzutowanie do gory
albo w doft hierarchii dziedziczenia),

B konwersji zdefiniowanych przez uzytkownika.

B Typ obiektu na ktér?' rzutujemy i z ktorego rzutujemy musi byc
znany w momencie kompilacji.

B Operator rzutowania static cast dziata na etapie kompilacji
za pomoca dostepnych operatorow konwersji.

RZUTOWANIE CONST CAST

B Rzutowanie to pozwala dodac albo zlikwidowac¢ deklarator
const lub volatile w typie wyrazenia (ale nie pozwala

zmienic typu gtdwnego).

B Operator rzutowania const cast ma nastgpujaca postac:
const cast<typ>(wyrazenie)
przy czym typ powinno byc¢ wskaznikiem, referencja lub
wskaznikiem do skfadowe;.

B Operator rzutowania const cast dziata na etapie
kompilacji.

RZUTOWANIE REINTERPRET CAST

B Operator rzutowania reinterpret cast ma nastgpujaca postac:
reinterpret cast<typ>(wyrazenie)
przy czym typ powinno byc wskaznikiem, referencja lub typem porzadkowym
(znaki, liczby catkowite, typ boolowski, wyliczenia).

B Rzutowanie to ma zmienic interpretacje typu wyrazenia (kompilator nie
sprawdza sensu tego rzutowania).

B Operator rzutowania reinterpret cast tworzy wartos¢ nowego typu,
ktory ma ten sam wzorzec bitowy co podane wyrazenie.

B Rzutowanie to nie gwarantuje przenosnosci.

B Operator rzutowania reinterpret cast dziala na etapie kompilaciji.

RZUTOWANIE DYNAMIC CAST

B Operator rzutowania dynamic cast ma nastepujaca postac:
dynamic cast<typ>(wyrazZenie)
przy czym wyrazenie powinno byc wskaznikiem lub referencja do typu
polimorficznego.

Rzutowanie to wykonuje sie w trakcie dziatania programu.

dynamic cast<T*>(p) zwraca wskaznik typu T* gdy obiekt wskazywany
przez p jest typu T lub ma unikatowa klase bazowa typu T (w przeciwnym
przypadku zwraca nullptr).

B dynamic cast<T&>(r) zwraca referencje typu T & gdy obiekt wskazywany
przez r jest typu T lub ma unikatowa klase bazowa typu T (w przeciwnym
przypadku rzuca wyjatek bad cast).

RTTI

B Mechanizm dynamicznego rozpoznawania typow, nazywany
RTTI (ang. Run-Time Type Identification), obejmuje dwa gtowne
zagadnienia:

B rozpoznanie typu w celu sprawdzenia poprawnosci i wykonania

rzutowania (konwersji) — do realizacji tego celu stuzy operator
dynamic cast<>;

B rozpoznanie typu w celu pordwnania go z typem innego obiektu —
do realizacji tego celu stuzy operator typeid.

B Aby uzywac operatora typeid nalezy wiaczyc plik
nagtowkowy <t ypeinfo> — wynikiem wyrazenia typeid
jest referencja do obiektu type info,ktory jest
zdefiniowany witasnie w tym pliku.

B Woyrazenia podane jako argument typeid nie ulegaja
konwersjom.

RTTI

Argumentem operatora typeid moze by¢ nazwa typu lub
dowolne wyrazenie.

Operator typeid zwraca identyfikator typu argumentu, ktory jest
obiektem klasy type info — klasa ta, poprzez przeciazenie
operatorow == i ! = zapewnia mozliwos¢ poréwnywania obiektow
reprezentujacych typy.

Przyktady:

double x = 1.618;

if (typeid(x) == typeid(double)) ... // true

if (typeid(x) == typeid(16.0)) ... // true

if (typeid(x) == typeid(2)) // false
if (typeid(x) !'= typeid(4)) ... // true

if (typeid(x) != typeid(int)) ... // true

RTTI

B Klasa type info posiada metode name, ktora zwraca C-napis
zawierajacy nazwe typu.

B Tekst zwracany przez funkcje name () moze by¢ rozny w
zaleznosci od uzytego kompilatora.

B Gdy argumentem typeid jest typ niepolimorficzny, to argument
jest nieewaluowany, czyli wyrazenie nie jest wyliczane przez
program (mozemy na przykfad zrobic¢ dereferencje pustego
wskaznika):
auto& info = typeid(* ((B*)nullptr));
std::cout << info.name () << std::endl;

B Lambdy nie moga by¢ uzywane (az do standardu C++20) w
nieewaluowanych kontekstach. Od C++20 lambdy, ktore maja
pusty liste przechwytywania moga by¢ uzywane w
nieewaluowanych kontekstach.

RTTI

B Funkcja before () o prototypie
bool before(const type info &rhs) const noexcept;
pozwala na uporzadkowanie typow — uporzadkowanie typow jest zalezne
od implementacji, a moze sie zmieni¢ nawet przy ponownym uruchomieniu
programu.

B funkcja hash code () o prototypie
size t hash code() const noexcept;
zwraca hash dla danego typu, ktory bedzie unikalny dla danego typu (co
powoduje, ze bedziemy mogli go uzywac na przyktad jako klucz w
kontenerze).Warto zwroci¢ uwage, ze hash moze byc¢ rozny dla tego
samego typu podczas réznych wykonan programu.

AUTOMATYCZNE OKRESLANIE TYPU

O W definicji zmiennej z jawnym inicjowaniem mozna uzyc¢ stowa kluczowego auto —

(o)

mozna w ten sposob utworzy¢ zmienng o typie takim, jak typ inicjujacego wyrazenia.
Przykiad 1:
auto jakasZmienna = L"To jest tekst";
Typ jakasZmienna jest programiscie tatwiej napisac¢ stowo auto niz const
wchar t * (takijak dla literatu tekstowego).
Przykfad 2:
auto innaZmienna =

boost::bind (&Funkcja, 2, 1, Obiekt);
Typem innaZmienna moze by¢ cokolwiek zwracanego przez pewna funkcje
szablonowa pod boost: :bind dla danych argumentdw, typ ten jest tatwy do
okreslenia przez kompilator, natomiast dla uzytkownika jest to trudne.

AUTOMATYCZNE OKRESLANIE TYPU

B Prztkiad 3:
Typ auto jest przydatny przy ograniczaniu rozwlektosci kodu.

Zamiast pisac:
for (vector<int>::const ilterator itr = myvec.begin();

itr != myvec.end(); ++itr)
Programista moze uzyc¢ krotszego zapisu:
for (auto itr = myvec.begin(); itr !'= myvec.end();

++1itr)

WYDOBYCIE TYPUWYRAZENIA

B Operator decltype pozwala na uzyskanie typu wyrazenia.

B Jego gldwnym przeznaczeniem tego operatora jest programowanie uogolnione,
w ktorym czesto trudno okresli¢ typy zalezne od parametréw szablonu.

B Typ okreslony za pomoca operatora decltype zgadza sig¢ z typem obiektu lub
funkcji zadeklarowanym w kodzie zrodtowym.

B Podobnie jak w przypadku operatora sizeof, operand decltype nie jest
wykonywany.

WYDOBYCIE TYPUWYRAZENIA

O Przyktady:
const inté& fool();

int 1i;
struct A { double x; };
const A *a = new A();

decltype (i) x2; // typ to int

decltype (foo()) x1 = i; // typ to const inté&

decltype (a->x) x3; // typ to double

decltype ((a->x)) x4; // typ to const double&

Wyrazenie w nawiasie (a->x) nie jest ani id-wyrazeniem ani dostepem do
cztonkow klasy, a stad nie oznacza nazwanego obiektu. Poniewaz to wyrazenie
jest |-wartoscia, jego wydedukowany typ jest referencja do typu wyrazenia, czyli
const double&.

	Slajd 1: Kurs języka C++
	Slajd 2: Spis treści
	Slajd 3: Rzutowanie
	Slajd 4: Tradycyjne operatory rzutowania
	Slajd 5: Tradycyjne operatory rzutowania
	Slajd 6: Konstruktory konwertujące
	Slajd 7: Konstruktory konwertujące
	Slajd 8: Operatory konwersji
	Slajd 9: Operator static_cast
	Slajd 10: Rzutowanie const_cast
	Slajd 11: Rzutowanie reinterpret_cast
	Slajd 12: Rzutowanie dynamic_cast
	Slajd 13: RTTI
	Slajd 14: RTTI
	Slajd 15: RTTI
	Slajd 16: RTTI
	Slajd 17: Automatyczne określanie typu
	Slajd 18: Automatyczne określanie typu
	Slajd 19: Wydobycie typu wyrażenia
	Slajd 20: Wydobycie typu wyrażenia

