
Zadanie 11 26-29 maja 2025 r.

kurs języka C++

szablon listy jednokierunkowej

Instytut Informatyki

Uniwersytetu Wrocławskiego Paweł Rzechonek

Prolog

Szablony w C++ umożliwiają programowanie uogólnione, czyli definiowanie abstrakcyjnych

algorytmów oraz struktur danych niezależnych od konkretnych typów, na których one pracują.

Typ danych dla szablonu jest określany (w sposób jawny bądź niejawny) dopiero w miejscu

użycia szablonu – to wtedy kompilator wygeneruje odpowiednią definicję funkcji albo klasy

szablonowej z określonym już typem.

Zadanie

Zdefiniuj szablon klasy mylist<T> dla listy jednokierunkowej w przestrzeni nazw adt. Klasa

reprezentująca listę ma być napisana zgodnie ze sztuką programowania dynamicznych

struktur danych – w pełni funkcjonalny węzeł listy mynode<T> zdefiniuj jako prywatną klasę

zagnieżdżoną w klasie mylist<T>; klasa listy mylist<T> będzie więc wygodnym do

używania opakowaniem na ukrytą homogeniczną strukturę listową zbudowaną na węzłach

mynode<T>. W szablonie klasy mylist<T> zdefiniuj następującą funkcjonalność (analogiczną

funkcjonalność zdefiniuj też w klasie węzła mynode<T>):

a. wstawienie elementu na początek listy (czyli na pozycję 0);

b. wstawienie elementu na koniec listy;

c. wstawienie elementu na zadaną pozycję;

d. usunięcie elementu z początku listy (czyli z pozycji 0);

e. usunięcie elementu z końca listy;

f. usunięcie elementu z określonej pozycji;

g. usunięcie elementu o zadanej wartości (pierwszego od początku);

h. usunięcie wszystkich elementów o zadanej wartości;

i. określenie pozycji elementu o zadanej wartości (pierwszego od początku);

j. policzenie wszystkich elementów o zadanej wartości;

k. zliczenie wszystkich elementów na liście;

l. sprawdzenie czy lista jest pusta.

Obiekt listy mylist<T> ma być kopiowalny (konstruktor oraz przypisanie kopiujące i

przenoszące). Uzupełnij definicję szablonu o konstruktor, który zainicjalizuje listę wartościami

początkowymi przekazanymi za pomocą kontenera initializer_list<T>. Pamiętaj

również o operatorze strumieniowym operator<< do czytelnego wypisania zawartości listy.

Następnie zdefiniuj szablony klas implementujących kolejkę myqueue<T> i stos mystack<T>.

Szablony te mają być zbudowane na liście (dziedziczenie niepublicznie po mylist<T>). Próba

pobrania elementu z pustej kolejki albo z pustego stosu ma skutkować zgłoszeniem jakiegoś

wyjątku standardowego.

Dalej, w przestrzeni nazw adt, zdefiniuj szablony dwóch funkcji do pracy z listami:

a. funkcja issorted() ma sprawdzać, czy lista jest uporządkowana;

b. funkcja sort() ma posortować elementy na liście.

Szablony tych funkcji powinny posiadać dwa parametry: typ danych przechowywanych w liście

oraz trejta implementującego operację porównywania elementów wybranego typu. Trejt ma

być parametrem domyślnym w szablonie ustawionym na obiekt lessthan<T> zawierający

operację porównywania za pomocą zwykłego operatora <; zdefiniuj też komplementarnego

trejta greaterthan<T> implementującego porównywanie za pomocą operatora >.

W trejtach zadbaj o specjalizację dla wskaźników na obiekty a w szczególności dla wskaźnika

typu const char*.

Na koniec w funkcji main() napisz zestaw testów rzetelnie sprawdzających działanie

wszystkich zdefiniowanych klas i funkcji, pracujących na różnych typach danych. Obiekty list,

stosów i kolejek, które będą poddawane testowaniu stwórz na stercie operatorem new; nie

zapomnij zlikwidować ich operatorem delete przed zakończeniem programu!

Ważne elementy programu

• Podział programu na pliki nagłówkowe i pliki źródłowe (osobny plik z funkcją main()).

• Użycie przestrzeni nazw adt.

• Definicja szablonu klasy dla listy jednokierunkowej mylist<T> wraz z zagnieżdżoną

definicja węzła mynode<T>.

• Szablony klas dla kolejki myqueue<T> i stosu mystack<T>.

• Zgłaszanie wyjątków w stosie i kolejce przy próbie pracy z pustą kolekcją.

• Szablony funkcji do sortowania danych na liście sort() i do weryfikacji posortowania

issorted().

• Definicja trejtów lessthan<T> i greaterthan<T> realizujących porównania.

• Realizacja specjalizacji trejtów dla wskaźników a w szczególności dla wskaźnika typu

const char*.

• Implementacja kopiowania i przenoszenia dla listy mylist<T>.

• Inicjalizacja stanu początkowego listy za pomocą kolekcji initializer list<T>.

• Destrukcja listy.

• Podział programu na pliki nagłówkowe i pliki źródłowe (wyodrębniony osobny plik

z funkcją main() z testami).

