
Zadanie 13 dodatkowe 9-12 czerwca 2025 r.

kurs języka C++

kalkulator ONP

Instytut Informatyki

Uniwersytetu Wrocławskiego Paweł Rzechonek

Prolog

Notacja Polska to beznawiasowy sposób zapisu wyrażeń logicznych i arytmetycznych, w

którym najpierw występuje operator (funkcja) a za nim operandy (argumenty). Taka

prefiksowa notacja została przedstawiona w 1920 roku przez polskiego logika Jana

Łukasiewicza. Pozwala ona na łatwiejsze przeprowadzanie operacji na długich formułach

logicznych czy wyrażeniach arytmetycznych.

ONP czyli Odwrotna Notacja Polska to sposób zapisu wyrażeń arytmetycznych, w którym

operator umieszczony jest za operandami. Jest to więc notacja postfiksowa. Zapis ten pozwala

na całkowitą rezygnację z użycia nawiasów w wyrażeniach, jako że jednoznacznie określa

kolejność wykonywanych działań (podobnie jak notacja Łukasiewicza).

Odwrotna notacja polska została opracowana przez Arthura Burksa, Dona Warrena i Jessego

Wrighta w 1954 roku. Sam algorytm i notacja zostały dopracowane przez australijskiego

filozofa i informatyka Charlesa L. Hamblina w połowie lat 50’tych XX wieku. Notacja

postfiksowa została odkryta na nowo przez Friedricha L. Bauera i Edsgera W. Dijkstrę na

początku lat 60’tych XX wieku, kiedy chcieli oni wykorzystać stos obsługiwany przez procesor

do przyspieszenia obliczania wyrażeń arytmetycznych (notacja postfiksowa idealnie nadawała

się do tego celu).

Zadanie

Napisz program interaktywnego kalkulatora postfiksowego. Kalkulator ten powinien

interpretować i obliczać wyrażenia zapisane w Odwrotnej Notacji Polskiej. Program ma

odczytywać polecenia ze standardowego wejścia cin, wykonywać obliczenia i wypisywać

wyniki na standardowe wyjście cout. Wszelkie komentarze i uwagi program ma wysyłać na

standardowe wyjście dla błędów clog. Dodatkową funkcjonalnością tego kalkulatora ma być

możliwość zapamiętywania wyników obliczeń w zmiennych.

Zaprojektuj hierarchię klas, która umożliwi łatwą i elegancką klasyfikację poszczególnych

symboli w wyrażeniu ONP (abstrakcyjna klasa symbol). Wyrażenie to ciąg operandów (klasa

operand) i operatorów albo funkcji (klasa funkcja). Operandy to liczby (klasa liczba

pamiętająca wartość typu double), zmienne (klasa zmienna z nazwą zmiennej) albo stałe

(klasa stala z nazwą stałej i skojarzoną z nią wartością typu double). Dobrze znane przykłady

stałych, które powinny się znajdować w Twoim kalkulatorze to e (2,718281828459), pi

(3,141592653589) i fi (1,618033988750). W klasie zmienna umieść statyczną kolekcję

asocjacyjną zawierającą zbiór ze zmiennymi (na przykład map<string,double> albo

unordered_map<string,double>) – zmienną odszukujemy po nazwie a wartość skoja-

rzoną ze zmienną odczytujemy z drugiego pola. Funkcje to przede wszystkim dwuargu-

mentowe operatory dodawania, odejmowania, mnożenia i dzielenia; należy też zaimplemen-

tować funkcje dwuargumentowe mod (reszta z dzielenia), log (logarytm) i pow (potęgowanie)

oraz jednoargumentowe neg (zmiana znaku), ln (logarytm naturalny) i exp (funkcja

eksponencjalna).

Symbole występujące w wyrażeniu należy najpierw podzielić za pomocą białych znaków

(separatorem niech będzie ciąg spacji i tabulacji), potem dopasować i utworzyć odpowiednie

obiekty a na koniec umieścić je w wybranej kolekcji sekwencyjnej (na przykład

forward_list<symbol>).

Program kalkulatora ma pracować z użytkownikiem interaktywnie i powinien rozpoznawać

trzy rodzaje poleceń:

• print wyrażenieONP

Obliczenie wartości wyrażenia ONP i wypisanie jej na standardowym wyjściu.

Wyrażenie wyrażenieONP będzie oczywiście zapisane w postaci postfiksowej. Czytając

kolejne symbole w wyrażeniu program powinien je zamieniać na konkretne obiekty i

umieszczać w kolejce (klasa queue<>). Przy obliczaniu wartości wyrażenia należy się

posłużyć stosem (klasa stack<>).

• set zmienna to wyrażenieONP

Utworzenie nowej zmiennej zmienna i przypisanie jej wartości obliczonego wyrażenia

wyrażenieONP. Wartość obliczonego wyrażenia należy wypisać na standardowym

wyjściu. Jeśli zmienna zmienna była zdefiniowana już wcześniej, to należy tylko

zmodyfikować zapisaną w niej wartość.

• clear

Usunięcie wszystkich zmiennych zapamiętanych do tej pory w zbiorze zmiennych. Do

kolekcji mogą trafiać tylko zmienne o nazwach będących poprawnymi identyfikatorami

i różnych od nazw funkcji, którymi posługuje się program.

• exit

Zakończenie działania programu. Zamknięcie strumienia wejściowego również

powinno zakończyć działanie programu.

Jeśli w wyrażeniu ONP zostanie wykryty błąd (nieznana komenda, źle sformułowane

wyrażenie, błędna nazwa, błędny literał stałopozycyjny, czy nierozpoznany operator, funkcja

lub zmienna) to należy wypisać stosowny komunikat o błędzie, ale nie przerywać działania

programu. Zadbaj o to by nazwa każdej zmiennej nie była dłuższa niż 7 znaków oraz aby była

różna od słów kluczowych print, set, to, clear i exit.

Do zaprogramowania tego zadania wykorzystaj kolekcje standardowe zdefiniowane w STL.

Definicje klas reprezentujących różne symbole w wyrażeniu ONP umieść w przestrzeni nazw

kalkulator.

Uzupełnienie

Więcej informacji na temat ONP znajdziesz w Internecie na stronie:

https://pl.wikipedia.org/wiki/Odwrotna_notacja_polska

Ważne elementy programu

• Użycie kolekcji standardowych.

• Wykorzystanie iteratorów do sekwencyjnego przeglądania kolekcji.

• Interaktywne przyjmowanie poleceń od użytkownika.

• Implementacja algorytmu obliczającego wartość wyrażenia ONP.

• Obsługa błędów za pomocą wyjątków.

