7. Java i bazy danych (JDBC)

Java jest doskonatym srodowiskiem programowania dostepu do baz danych.
Przyjrzymy si¢ wigc mechanizmom umozliwiajagcym pisanie takich programow.

7.1. Przykladowa baza danych

Schemat przyktadowej bazy danych ksigzek (moze czgs¢ BD ksiggarni
internetowej) przedstawia ponizszy rysunek.

.
D oo |15BN
NAME AUTID
TYTLL o
WYDID
ROK
CENA

Baza sklada si¢ z trzech powigzanych tabel (AUTOR, POZYCIJE, WYDAWCA).
Pola ID (identyfikatory) sg kluczami gléwnymi w tabelach AUTOR 1
WYDAWCA, w tabeli POZY CJE odnoszg sie do nich klucze zewngtrzne (obce)
AUTID 1 WYDID. Pole ISBN jest kluczem glownym tabeli POZY CJE. Podobne;
bazy bedziemy uzywac w przyktadowych programach tego rozdziatu.

Ponizej przedstawiono plik wsadowy z instrukcjami dla MySQL, ktore tworza
przyktadowa bazg. Na tej podstawie mozna si¢ zorientowac jak ta baza wyglada.

create database if not exists ksidb;
use ksidb;

drop table if exists AUTOR;

drop table if exists WYDAWCA;

drop table if exists POZYCJE;

create table AUTOR (
AUTID integer not null AUTO_INCREMENT,
NAME varchar (255) not null,
PRIMARY KEY (AUTID)
) ENGINE=INNODB;

create table WYDAWCA (
WYDID integer not null AUTO_ INCREMENT,
NAME varchar (255) not null,
PRIMARY KEY (WYDID)
) ENGINE=INNODB;

load data infile '../BazySql/ksidb/AUTOR.TXT' replace into table AUTOR;
load data infile '../BazySql/ksidb/WYDAWCA.TXT' replace into table WYDAWCA;

create table POZYCJE (
ISBN char(13) not null,
AUTID integer not null,
TYTUL varchar (255) not null,
WYDID integer not null,
ROK integer not null,
CENA real,
PRIMARY KEY (ISBN),

INDEX (AUTID),
FOREIGN KEY (AUTID) REFERENCES AUTOR (AUTID),

INDEX (WYDID),
FOREIGN KEY (WYDID) REFERENCES WYDAWCA (WYDID)

) ENGINE=INNODB;

load data infile '../BazySql/ksidb/POZYCJE.TXT' replace into table POZYCJE;

Podobny skrypt dla Derby w trybie Embedded :

connect 'jdbc:derby:ksidb;create=true’';

drop table POZYCJE;
drop table AUTOR;
drop table WYDAWCA;

create table AUTOR (
AUTID integer not null generated by default as identity,
NAME varchar (255) not null,
PRIMARY KEY (AUTID)
);

create table WYDAWCA (
WYDID integer not null generated by default as identity,
NAME varchar (255) not null,
PRIMARY KEY (WYDID)
) ;

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE

(null, "AUTOR', "AUTOR.TXT',null,null,null, 0);
CALL SYSCS UTIL.SYSCS IMPORT TABLE

(null, "WYDAWCA', '"WYDAWCA.TXT',null,null,null,0);

create table POZYCJE (
ISBN char(13) not null,

AUTID integer not null,

TYTUL varchar (255) not null,

WYDID integer not null,

ROK integer not null,

CENA real,

PRIMARY KEY (ISBN),

FOREIGN KEY (AUTID) REFERENCES AUTOR (AUTID),
FOREIGN KEY (WYDID) REFERENCES WYDAWCA (WYDID)
) i

CALL SYSCS UTIL.SYSCS IMPORT TABLE
(null, '"POZYCJE', 'POZYCJE.TXT',null,null,null,0);

7.2. Dlaczego Java?

Zazwyczaj "powazne" RDBMS nie dostarczaja gotowych (zadowalajacych)
rozwigzan w zakresie graficznych interfejsoéw dostgpu do baz danych lub nieco
bardziej zaawansowanych $rodkow przetwarzania danych na styku klient — serwer
bazodanowy.

Zamiast tego udostepniane sg programistyczne interfejsy (API), dzieki ktorym
mozna takie problemy rozwigzywac.

Kazdy RDBMS ma zdefiniowane dla réznych jezykow programowania
odpowiednie interfejsy programistyczne dostepu do BD (C, C++, Cobol, PL/I etc;
nie wspomng¢ juz o Visual Basicu czy jezykach specyficznych dla danego
RDBMS).

Sa to jednak biblioteki dynamiczne, skompilowane (i zlinkowane) dla konkretnych

platform sprzetowych i systemowych. Kazde takie API r6zni si¢ w tez w zalezno$ci
od RDBMS.

Programistyczny interfejs dostepu do baz danych z poziomu Javy
JDBC (Java Database Connectivity API):

« jestniezalezny od maszyny bazodanowej (RDBMS)
« jestniezalezny od platformy sprzetowe]
« jestniezalezny od systemu operacyjnego

Jest zatem jednolity i uniwersalny, a do tego tatwy w uzyciu i aktualny (np.
umozliwia dziatania, wykorzystujace nowe konstrukcje SQL — przewijalne tabele
wynikowe czy typy danych SQL3 — oraz programowanie z uwzglgdnieniem
wymagan srodowisk rozproszonych).

Wszystko co chceieliby$my robi¢ z dowolnymi relacyjnymi bazami danych z
poziomu programéw uzytkowych — mozemy zrobi¢ w Javie, w jej duchu 1
konwencji, majac jednoczes$nie do dyspozycji przebogate srodowisko Javy.

Znajac Jave mozemy szybko i tatwo tworzy¢ aplikacje bazodanowe, ktore
wykraczaja poza samg interakcje z RDBMS 1 moga wigcza¢ wszystko co Java ma
do zaoferowania (programowanie sieciowe, rozproszone, multimedialne itp.)

7.3.JDBC

JDBC jest zestawem klas 1 interfejséw, umozliwiajacych:

1. Polaczenie z bazg danych
2. Wykonywanie instrukcji SQL na bazie danych
3. Otrzymywanie i przetwarzanie wynikow instrukcji SQL (np. tabel

wynikowych)

Wersja JDBC 1.0 dostarcza podstawowych srodkow dziatania na BD.
Wersje JDBC 2.0 i - aktualna JDBC 4.0 daja dodatkowe mozliwosci np.

« przewijalne i modyfikowalne tabele wynikowe,

o bezposrednie modyfikowanie tabel wynikowych za pomoc metod klasy
Statement

« wsadowe przetwarzanie instrukcji SQL

o obstuge typow danych SQL3

« wspomaganie JNDI (Java Naming and Directory Services) — czyli
mozliwo$¢ katalogowania 1 prowadzenia nazw zrddet danych na poziomie
logicznym (podobnie jak to jest w hierarchicznym systemie plikowym)

« pooling polaczen (przechowywanie puli potaczen w pamigci w celu ew.
ponownego uzycia i przyspieszenia transakcji)

« transakcje rozproszone (przesytanie danych w sieci do takich klientéw jak
np. przegladarki lub laptopy)

o dostep do praktycznie kazdej formy tabularyzowanych danych (w tym
arkuszy kalkulacyjnych i1 zwyktych plikow),

o obstuge typu XML.

JDBC pozwala na dziatanie w architekturze dwu- i trzy-warstwowej.

Architektura dwuwarstwowa

Java Applikation
JDBC

Client Machine

I DBMS proprietary protocol
- Database server
I DBMS ,

Zrédto: JDBC User's Guide. Javasoft

Architektura trzywarstwowa

Jave appletor
HTKL bowser
1
¥

Application Server

CHent machine (GUIL)

HTTP, RML COREBA, or other calls

< Server machine
Hava) {(business Jogic)

JDBC
DBMS -proprietary protocol

Database server

Zrédto: JDBC User's Guide. Javasoft
Zalety warstwy posredniej: efektywnos¢, kontrola, bezpieczenstwo, utatwienie

utrzymywania i rozwoju systemu, mozliwosci integracji z innymi podsystemami
(middleware).

7.4. Sterowniki JDBC

Aby polaczy¢ sie z bazg danych i méc wykonywacé na niej operacje nalezy
skorzysta¢ ze specjalnego sterownika, ktory thumaczy odwotania z poziomu Javy
na odwotania wlasciwe dla danego RDBMS.

Istniejg 4 typy sterownikow.

Typ sterownika Wyjasnienia Zastosowanie
1-JDBC-ODBC bridge |Dostep do BD przez ODBC. |Wszelkie BD spetniajace
protokot ODBC.
+ sterownik ODBC JDBC-ODBC bridge
komunikuje si¢ ze Kiedy nie ma problemow
sterownikiem ODBC aten z |z fadowaniem natywnego
baza danych. kodu po stronie klienta
Natywny kod ODBC musi
by¢ zatadowany po stronie
klienta.
2 - Native-API Sterownik JDBC tlumaczy [Sterowniki sg
odwotania na natywny kod |specyficzne dla RDBMS
partly-Java driver konkretnego API klienta dostarczane przez firmy
danego RDBMS. np. Oracle, Sybase, IBM
DB2 (UDB) etc.
3 - JDBC-Net Tylko kod javowy. Najbardziej elastyczne
Odwotania tlumaczone s3 na [rozwigzanie, ale w
pure Java driver uniwersalny, niezalezny od |przypadku uzycia w

RDBMS, protokét sieciowy, a|lnternecie wymaga, by
nastepnie przez serwer na sterownik/serwer

kody specyficzne dla RDBMS|zapewniaty odpowiedni
poziom bezpieczenstwa

4 - Native-protocol Tylko kod javowy. Pozwala na b. efektywna,

bo bezposrednig
pure Java driver Sterownik ttumaczy komunikacje klient-

odwotania na specyficzny dla [serwer bazodanowy.
danego RDBMS protokoét Doskonale w intranecie.
sieciowy
Glownym zrédtem sg
producenci RDBMS np.
Oracle, Sybase, Informix,
IBM DB2, Inprise
InterBase, Microsoft
SQL Server

7.5. Laczenie z baza danych

Potaczenie z bazg danych wymaga dwoch krokow:

« zaladowania sterownika JDBC,
» zazadania od sterownika polgczenia i ew. uzyskania go w postaci obiektu
typu Connection.

Zatadowanie sterownika odbywa si¢ za pomoca wywotania statycznej metody
klasy Class o nazwie forName i z argumentem — nazwa klasy (sterownika). Ogolnie
metoda ta zwraca obiekt-klas¢ o podanej nazwie. Jesli klasa ta nie jest zatadowana
do JVM, nastepuje jej zaladowanie. Klasy-sterowniki sg tak napisane, ze przy ich
tadowaniu rejestruja si¢ jako obiekty typu Driver.

Zwykle obiekt ten (klasa) nie interesuje nas (dlatego w wywotlaniu pomijamy
zwracany rezultat).

Przyktady:

Class.forName(*'sun.jdbc.odbc.JdbcOdbcDriver");
Class.forName(*'postgresql.Driver");
Class.forName(*'oracle.jdbc.driver.OracleDriver");
Class.forName(**com.mysql.jdbc.Driver");

Nad zatadowanymi sterownikami kontrolg sprawuje DriverManager (nazwa klasy).
Prowadzi on liste zarejestrowanych sterownikow.

Statyczna metoda getConnection z klasy DriverManager pozwala na uzyskanie
potaczenia z bazg, ktorej URL podajemy jako argument metody.

DriverManager przeglada liste zarejestrowanych sterownikow 1 wybiera ten, ktory
moze polaczy¢ si¢ z podang bazg.

Po potaczeniu z bazg zwracany jest obiekt typu Connection, ktéry reprezentuje
potaczenie.

Connection con = DriverManager.getConnection(dbUrl,
userlD,
password);

lub (jesli dopuszczalne jest "domys$lne" potaczenie — bez podania nazwy
uzytkownika 1 hasta)

Connection con = DriverManager.getConnection(dbUrl);
Wszystkie argumenty metody getConnection sg typu String.
Forma lokatorow (urli) zalezna jest od sterownika i1 konkretnej bazy danych np.

// zrodto danych ODBC o nazwie ksidb
String dbUrl = "jdbc:odbc:ksidb"

// taczenie z Oraclem z dodatkowymi specyfikacjami

String dbUrl = "jdbc:oracle:thin:user/password@(description=(address_list=(
address=(protocol=tcp) (host=dbmachine)(port=1521)))(source_route=yes)
(connect_data=(sid=ksidb)))";

I MySQL.:
String dbUrl = "'jdbc:mysql://localhost/ksidb"";

Uwaga: klasa sterownika powinna by¢ dostepna dla odwolan z naszego programu.
Odpowiedni JAR mozna np. umies$ci¢ w katalogu jre/lib/ext.

W trakcie tadowania klasy sterownika i przy probie potaczenia mogg powstac
wyjatki, ktore musimy obstuzyc.

String driverName = "com.mysql.jdbc.Driver";

String url = "jdbc:mysql://localhost/ksidb";
String uid = "jakis";
String pwd = "haslo";

Connection con;

try {
Class.forName (driverName) ;
con = DriverManager.getConnection (url, uid, pwd);
} catch (ClassNotFoundException exc) { // brak klasy sterownika

System.out.println ("Brak klasy sterownika");
System.out.println (exc);
System.exit (1) ;

} catch(SQLException exc) { // nieudane poilaczenie

System.out.println ("Nieudane potaczenie z " + url);
System.out.println (exc);
System.exit (1) ;

Mozemy tez przechwyci¢ oba wyjatki w jednej klauzuli catch(Exception exc) ...

Innym sposobem uzyskania potaczenie jest wykorzystaie serwiséw JNDI oraz tzw.
zrodet danych - zapoznamy sie z nim w rozdziale "Aplikacje WEB".

Sterowniki spetniajace specyfikacje JDBC 4.0 (jesli odpowiednie JARy spetniaja
protokol Service Provider) moga by¢ odnajdywane bez jawnego zatadowania klasy.
Np. jesli nasza aplikacja ma dostep do pliku derby.jar (jest na $ciezce dostepu klas),
to uzyskac potaczenie mozemy prosciej:

Connection con = DriverManager.getConnection ("jdbc:derby:ksidb") ;

Dzieje si¢ tak dlatego, ze w derby.jar w katalogu META-INF/services znajduje si¢
plik java.sql.Driver, zawierajacy nazwe klasy sterowanika.

Przy tej okazji - par¢ stow o Derby.

Derby jest niewielkim i wygodnym w uzyciu SZBD, catkowicie napisanym w
Javie, dostarczanym w dystrybucji Javy 6.

Moze dziata¢ w dwoch trybach:

« embedded - SZBD dziata w tej samej maszynie wirtualnej co nasza aplikacja
1 nie wymaga dziatania serwera,
« klient-serwer (wymaga startu serwera Derby)

Bardzo wazng kwestig jest ustalenie systemowej wlasciwosci

Javy derby.system.home, wskazujacej na katalog, w ktorym zajduja si¢ bazy
danych. Jesli tej wtasciwos$ci nie ustalimy, to zostanie przyjety biezacy katalog lub
katalog podany bezposrednio przy specyfikacji URLa bazy danych.

Wiasciwos¢ derby.system.home mozemy okresli¢ podajac opcje -
Dderby.system.home=nazwa_katalogu przy starcie JVM (czy to nazej aplikacji,
czy serwera Derby czy tez CLI, ktéry w Derby nazywa sig¢ ij.

Zalozmy, ze:

JAVA HOME wskazuje na katalog instalacyjny Javy i katalog
%JAVA HOME%/bin jest nasciezce PATH

DERBY_HOME - katalog instalacyjny Derby,

DERBY _JARS - zawiera nazwy niezbednych bibliotek JAR z

katalogu %DERBY HOME%/lib, w szczego6lnosci: (rozdzielone srednikami):
%DERBY_HOME%/lib/derby.jar

%DERBY_HOME%/lib/derbynet.jar
;%DERBY_HOME%/lib/derbyclient.jar
%DERBY_HOME%/lib/derbytools.jar

Start CLI w trybie embedded ze skryptem tworzacym baze danych ksidb w
katalogu D:\DerbyDbs

java -Dderby.system.home=D:/DerbyDbs -cp "$DERBY JARS" -
Dij.protocol=jdbc:derby:
org.apache.derby.tools.ij nazwa skryptu

Start aplikacji App w trybie embedded Derby (dostep do bd ksidb umieszczonej w
katalogu D:\DerbyDbs):

java -Dderby.system.home=D:/DerbyDbs -cp %$DERBY HOMES%/derby.jar App

// dostep do ksidb w programie:
Connection con = DriverManager.getConnection ("jdbc:derby:ksidb");

Start serwera Derby (z ustaleniem derby.system.home):

java -Dderby.system.home=D:/DerbyDbs -cp "$DERBY JARS"
org.apache.derby.drda.NetworkServerControl start

Dostep do bazy danych za pomoca protokotu sieciowego (po starcie serwera):

String driverName = "org.apache.derby.jdbc.ClientDriver";
String url = "jdbc:derby://localhost/ksidb";
try {

Class.forName (driverName) .newInstance () ;

Connection con = DriverManager.getConnection (url);

Y ATY

}
lub jes$li dostepnym JARem jest tylko derbyclient.jar:

try {
Connection con =
DriverManager.getConnection (jdbc:derby://localhost/ksidb) ;
Y AETT
}

Dostep w trybie embedded do bazy danych umieszczonej w katalogu D:\DerbyDbs
(niezaleznie od tego czy wlasciwos¢ derby.system.home zostata ustalona czy nie):

Connection con = DriverManager.getConnection (jdbc:derby:D:/DerbyDbs/ksidb) ;

Po uzyskaniu potaczenia otrzymany obiekt Connection wykorzystujemy do
operacji na bazie danych za posrednictwem innych obiektow, ktory uzyskamy od
obiektu Connection.

Pokazuje to ponizszy rysunek.

DriveriManager
Connection
gethletaData() createStatement(...)
prepareStatement(...)
DatabaseMetaData Statement
(lub PreparedStatement

lub CallableStatement)

Po zakonczeniu operacji na bazie danych warto zwolni¢ uzyskane zasoby (takie jak
Statement) oraz potaczenie, wywotujac odpowiednie metody close() na rzecz
obiektow reprezentujacych zasoby/ potaczenie.

Nie zawsze jest to obowigzkowe, bo zwykle zasoby sa zwalniane automatycznie
przy zakonczeniu programu, ale nalezy do dobrej praktyki programistycznej, moga
si¢ bowiem zdarzy¢ takie sytuacje, kiedy zasoby nie zostang automatycznie
zwolnione.

7.6. Uzyskiwanie metainformacji o bazie danych
(przyklad)

Connection con;
DatabaseMetaData md; // metadane

// ... uzyskane polaczenie
// reprezentuje obiekt con

// uzyskanie metadanych
md = con.getMetaData() ;

// odpytywanie metadanych o rbzne

// informacje

md.getDatabaseProductName () ;
md.getDatabaseProductVersion () ;

md.getDriverName () ;

md.getURL () ;

md.getUserName () ;

md.supportsAlterTableWithAddColumn () ;
md.supportsAlterTableWithDropColumn () ;
md.supportsANSIO2FullSQL () ;

md.supportsBatchUpdates () ;

md. supportsMixedCaseIdentifiers();
md.supportsMultipleTransactions () ;

md. supportsPositionedDelete () ;

md. supportsPositionedUpdate () ;

md. supportsSchemasInDataManipulation () ;
md.supportsTransactions () ;
md.supportsResultSetType (ResultSet.TYPE SCROLL INSENSITIVE) ;
md.supportsResultSetType (ResultSet.TYPE SCROLL SENSITIVE) ;
md.insertsAreDetected (ResultSet.TYPE SCROLL INSENSITIVE) ;
md.updatesAreDetected (ResultSet.TYPE SCROLL INSENSITIVE) ;

Przyktadowe wyniki:

Interfejs DatabaseMetaData zawiera rowniez metody umozliwiajgce uzyskanie
informacji o:

« podtrzymywanych przez RDBMS typach danych
« zestawie tabel w bazie danych.

7.7. Wykonywanie instrukcji SQL

Do wykonywanie instrukcji SQL stuzy obiekt typu:
Statement (oznacza instrukcje SQL)

a takze obiekty typu interfejséw pochodnych:
PreparedStatement (prekompilowane instrukcje SQL)
CallableStatement (przechowywane procedury)

Uzyskujemy je od obiektu typu Connection za pomocg odwotan (odpowiednio):
createStatement(...), prepareStatement(...) i prepareCall(...)

Ponizszy schemat obrazuje sposob postugiwania si¢ tymi interfejsami.

Connection con = DriverManager,getConnection(...);

Statement stmt = con.createStatementy...) :
createStatement() moze nie

> £ ‘ .
—— miec argumentéw lub moze
l miec argumenty definiujgce
typ "tablicy wynikowe;"
zwigzanej z danym SQL

Aby wykonac konkretne polecenie SQL, narzecz
obiektu typu Statement wywolujemy odpowiednie
metody z argumentem = polecenie SQL

SELECT SELECT lub modyfikacje

modyfikacje

stmt.executeUpdate....) t.executeq...)

stmt.executeQuery(...)
v.

Podajemy argument typu String
- instrukcje SQL do wykonania

Réznice pomigdzy w/w metodami sg nastepujace.

Argumenty metod SELECT... CREATE TABLE...
DROP TABLE...
INSERT...
Metody UPDATE...
DELETE...
executeQuery(...) zwraca tabele wynikowa |-
executeUpdate(...) - zwraca liczbe
zmodyfikowanych
rekordow lub —1 (np. dla
CREATE...)
execute(...) wykonuje dowolng instrukcje SQL i zwraca wartos$¢
boolean (true — jesli powstala tabela wynikowa, false
— jesli nie; prawdziwy wynik — tabele wynikowg lub
liczbe zmodyfikowanych rekordéow uzyskujemy za
pomocg dodatkowego odwolania do obiektu
Statement)

Ten sam obiekt typu Statement moze by¢ wielokrotnie uzywany do wykonania
r6znych instrukcji SQL np.

Statement stmt;

String[] creTab = { "CREATE TABLE A (ID INTEGER, NAME CHAR(30))",
"CREATE TABLE B (ID INTEGER, ADR CHAR(30))",

}i

for (int 1 = 0; 1 < creTab.length; i++) {
stmt.executeUpdate (creTab[i]);

}

stmt.executeUpdate ("INSERT INTO A VALUES (1, 'Pies')"™);

stmt.executeUpdate ("INSERT INTO B VALUES (1, 'Buda')");

7.8. Obstuga wyjatkow SQLException

Zaréwno createStatement() jak 1 metody executeUpdate(...), executeQuery(...) i
execute(...) moga generowac wyjatki typu SQLException.

Wyjatki te sygnalizujg btedy, wykrywane albo przez sam sterownik (np. brak
jakiego$ trybu dziatania) , albo przez RDBMS (np. bledy sktadniowe w SQL lub
proba naruszenia ograniczen — jednoznacznosci, spojnosci referencyjnej itp.).

Wyjatki te musimy obstugiwac.
A w trakcie obslugi mozemy uzyska¢ wiele cennych informacji o przyczynie biedu.

Na przykitad:

Connection con;
Statement stmt;
try {
Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver") ;
con = DriverManager.getConnection ("jdbc:odbc:ksidb") ;
stmt = con.createStatement ()
} catch (Exception exc) {
System.out.println (exc) ;
System.exit (1) ;
}

String crestmt = "CREATE TABLE WYDAWCA (" +
" ID INTEGER, "o+
" NAME VARCHAR (120), " +

" CONSTRAINT WYDPK PRIMARY KEY(ID))";
try {
stmt.executeUpdate (crestmt) ;
System.out.println ("Table created.");
} catch (SQLException exc) {
// rézne informacje, ktbére mozna uzyskaé o wyjatku SQLException

System.out.println ("SQL except.: " + exc.getMessage()); // komunikat
System.out.println ("SQL state : " + exc.getSQLState()); // kod std
System.out.println ("Vendor errc: " + exc.getErrorCode()); // kod RDBMS

System.exit (1) ;
} finally { // klauzula finally wykona sie zawsze

try { // wykorzystujemy to do prawidlowego zwolnienia zasobdw
stmt.close();
con.close () ;

} catch (SQLException exc) {

System.out.println (exc) ;
System.exit (1) ;

7.9. Instrukcja SQL SELECT, tabele wynikowe, ResultSet
| kursory

W wyniku wykonania instrukcji SELECT powstaje tabela wynikowa.
Jest ona w Javie dostepna poprzez obiekt typu ResultSet.

w kontekscie:
Connection con = ... /{ uzyskane potaczenia
Statement stmt = con.createStatement();

String query = "¢ ";
ResultSet rs = executeQuery(query);
d Powstaly ResultSet rs daje dostep

do tablicy wynikowej zawierajacej:

SELECT * FROM AUTOR Wszystkie rekordy 1 wszystkie
kolumny ztablicy AUTOR

SELECT TYTUL, CENA FROM POZYCIJE Kolumny TYTUL 1 CENA oraz

WHERE CENA < 20 rekordy spetniajgce warunek CENA <

20 z tablicy POZYCIE

select autor.autor, pozycje.tytul from autor, pozycije |Polaczenie tablic AUTOR 1

where autor.id = pozycje.autid POZYCIE, dajace nazwisko autora
and pozycie.tytul like % Java' oraz tytul ksigzki, przy czym
pokazywane sg tylko te rekordy, dla
ktérych w kolumnie TY TUL
wystepuje cigg znakdéw Java

Przy czym:

o ResultSet mozemy przegladac¢ za pomocg kursora,

« kursor inicjalnie jest ustawiony przed pierwszym rekordem tabeli
wynikowej,

o w zalezno$ci od typu ResultSet mozemy przemieszcza¢ kursor tylko w
kierunku od poczatku tabeli wynikowej do konca (typ:

ResultSet. TYPE_FORWAD_ONLY) lub w obu kierunkach (typy
ResultSet. TYPE_SCROLL_INSENSITIVE lub
ResultSet. TYPE_SCROLL_SENSITIVE).

« interfejs ResultSet zawiera metody przemieszczajace kursor, z ktorych
korzystamy przy przegladaniu tabeli wynikowe;.

« metody przemieszczajace kursor zwracaja wartos$¢ logiczng false, gdy
zadane przemieszczenie kursora nie jest mozliwe np. polecenie przejscia do
nastepnego rekordu wyprowadza nas poza tabele,

 jesli kursor ustawiony jest na jakims rekordzie tabeli wynikowej, to mozemy
pobra¢ wartosci jego pol za pomocg odpowiednich metod interfejsu
ResultSet; metody te zapewniajg automatyczne przeksztatcenie typéw SQL
do odpowiadajacych im typodw Javy

7.10. Przemieszczanie kursora
W konteks$cie:

ResultSet rs = stmt.executeQuery(query);

Odwotanie |Ustawia kursor Typ ResultSet
nieprzewijalny |przewijalny

rs.beforeFirst(); |Przed pierwszym rekordem [NIE TAK
rs.first(); Na pierwszym rekordzie NIE TAK
rs.next(); Na nastepnym rekordzie TAK TAK
rs.previous(); |Na poprzednim rekordzie NIE TAK
rs.last(); Na ostatnim rekordzie NIE TAK
rs.afterLast(); [Za ostatnim rekordem NIE TAK
rs.absolute(n); |Na n-tym rekordzie NIE TAK
rs.relative(n); |Na rekordzie oddalonym o n |NIE TAK

miejsc od biezacego (jesli n

< 0 —to do poczatku)

Przyktad:
ile rekordow zawiera tabela wynikowa?

int count = 0;

while (rs.next()) count++;

lub:

rs.last () ;

int count = rs.getRow() // numer biezacego rekordu

Uwaga: dziatanie na ResultSet nie oznacza, ze wszystkie rekordy tabeli wynikowe;j
sg "Sciggane" z RDBMS. Jest zwykle $ciggana jakas rozsadna porcja, gdy kursor
zbliza si¢ do pozycji od ktorej te rekordy moga by¢ potrzebne.

Dlatego drugi sposob (dostepny tylko dla przewijalnych tabel wynikowych) jest
bardziej efektywny od pierwszego

Oczywiscie, ResultSet przegladamy zwykle po to by pobiera¢ wartosci pol
poszczegblnych rekordow 1 wykonywac na nich jakie$ operacje (chocby
raportowania).

7.11. Odpowiednios¢ typow danych SQL i Javy. Pobieranie

wartosci pol

Typy danych zapisane w BD r6znig si¢ od typéw danych Javy.
Aby sprawnie dziata¢ na warto$ciach pol poszczegdlnych rekordoéw trzeba
wiedzie¢ w jaki sposob typy SQL sg odzwierciedlane w typy Javy.

Standardowy typ SQL

CHAR
VARCHAR
LONGVARCHAR
NUMERIC
DECIMAL
BIT
TINYINT
SMALLINT
INTEGER
BIGINT
REAL
FLOAT
DOUBLE
BINARY
VARBINARY
LONGVARBINARY
DATE

TIME
TIMESTAMP
CLOB

BLOB
ARRAY
STRUCT

REF

Podstawowy typ Javy

String

String

String
java.math.BigDecimal
java.math.BigDecimal
boolean

byte

short

int

long

float

doub le

double

byte[]

byte[]

byte[]

java.sql.Date
java.sgl.Time
java.sql. Timestamp
java.sgl.Clob
java.sgl.Blob
java.sgl.Array
java.sgl.Struct
java.sgl.Ref

Obiektowy typ Javy
String
String
String
j ava.math.BigDecimal
java.math.BigDecimal
Boolean
Integer
Integer
Integer
Long
Float
Double
Double
byte[]
byte[]
byte[]
java.sql.Date
java.sgl.Time
java.sql. Timestamp
java.sgl.Clob
java.sgl.Blob
java.sgl.Array
java.sgl.Struct
java.sgl.Ref

Ta informacja jest wazna, jesli chcemy tworzy¢ nieco bardziej elastyczne aplikacje

(np. uniwersalne edytory tabel bazodanowych).

Do pobierania wartosci kolumn tabeli wynikowej stuzag metody getTTT(...)
interfejsu ResultSet, ktére dokonujg automatycznej konwersji pomiedzy SQL-
owym typem pola, a typem Javy TTT (TTT — oznacza tu jakis typ np. int lub

String).

Najprostszy szablon:

ResultSet rs = stmt. executeQuery(query);

; Nazwa lub numer kolumny tablicy
while (rs.next()) { K_\ e
TTT pole = 1s.getTTT(#);

Mozliwosci uzycie metod getTTT(...) wobec okreslonych typéw SQL wyjasnia
nastgpujaca rysunek.

getString dokonuje
konwersji wigkszosei
typéw SQL do String

BINARY
VARBINARY
LONGVARBINARY
TIMESTAMP
CLOB

BLOB

STRUCT

JAVA OBJECT

ARRAY
REF

getByte
getShort

getint
getLong
getFloat
getDouble
getBigDecimal
getBoolean
gerString

getObject moze byé uzyte
wobec kazdego typu SQL,
ale potem sami musimy
zapisaé wlasciwg
konwersj¢

e | od [m [oe [2| [| [6| TINVINT
| o6 [w [oe [o] e[| pe[% |SMALLINT
w [[w [oe [%[] pe] [[INTEGER
w | [w [oe [e[pe] | = [| BIGINT

Bl | M b | gl x| | > | REAL

be |0 [el [0d | M| | FLOAT

B | 34 | M| e % |5 | % | ™[> | DOUBLE
B | 3 | pe| o¢ [[B¢ | | [3¢ | DECIMAL
w || pef | %[|x|m|% | NUMERIC

v | pel w o [s [e e[[[BIT

velse [m[oe| [|2¢]]2 |CHAR

el oe | m e % |||]| VARCHAR

Mol mbe ||| ™| x| LONGVARCHAR

getBytes XiXix
gerDate
getTime

Ll K

getTimestamp

gerAsciiSream

getUnicodeStream
gerBinaryStream x[x(X
getClob X
getBlob X
getArray X
getRef X
gerCharacterStream (2| X|x|x|x
getObject ®|xfx|x|x|x|x|x x| =22 |x|x x| |x|x]x|x|x x| XX

HEIEIEIE
REIEIEIE
FMPRBEERE
M| m
%
%

B

X — oznacza mozliwos¢ uzycia metody, X — preferowana metodg
Zrédio: Getting Started with JDBC AP

Przyktad:

String sel = "select tytul, cena from pozycje where cena > 40";
try |

Statement stmt = con.createStatement () ;

ResultSet rs = stmt.executeQuery(sel);

while (rs.next()) { // mozna tez uzyé:
String tytul = rs.getString(3); // rs.getString ("tytul");
float cena = rs.getFloat (6); // rs.getFloat ("cena");
float usd = cena/4;
System.out.println("Tytul: " + tytul);
System.out.println("Cena : " + cena + " PLN");
System.out.println("USD : " + usd + " USD");

(

SEEEiGEENE el sabilie b (eSS ¥
}
rs.close();
stmt.close();
con.close();
} catch (SQLException exc) {
System.out.println (exc.getMessage());

}

Uwaga: nalezy zamyka¢ ResultSet po wykorzystaniu (rs.close()), aby na pewno
zwolni¢ zasoby.

ResultSet jest zamykany automatycznie, gdy zamykamy Statement (stmt.close())
lub gdy ten sam obiekt typu Statment wykorzystywany jest ponownie do
wykonania innej instrukcji SQL (ew. powstaje wtedy nowy ResultSet).

Typ ResultSet okresla jego whasciwoser. Typ specyfikujemy podajac jako argumenty
metody createStatement() odpowiednie stale statyczne z klasy ResultSet.

przewijalny nieprzewijalny
TYPE FORWARD ONLY
z biezacy aktualizacja bez aktualizacji
(na biezaco uwzglednia TYPE SCROLL_INSENSITIVE
zmiany dokonywane
przez innych uzytkownikow BD)
TYPE SCROLL_SENSITIVE

modyfikowalny
(dopuszcza modyfikacje ResultSet rs = stmt.createStatement 8)

tablic BD
za pomoca metod ResultSet)
CONCUR _UPDATABLE

niemodyfikowalny
CONCUR READ ONLY—

7.12. Modyfikowalny ResultSet

Jezeli sterownik JDBC dopuszcza modyfikowalny ResultSet (typ:

ResultSet. TYPE CONCUR UPDATABLE), to mozemy uzy¢ wobec obiektu typu
ResultSet metod updateTTT(...), updateRow(), insertRow() i deleteRow(...).
Pozwalajg one na: dodawanie, modyfikowanie 1 usuwanie rekordow bez
bezposredniego uzycia instrukcji SQL, operujac na obiekcie typu ResultSet.

Przed wywotaniem tych metod nalezy ustawi¢ kursor, tak by wskazywat
odpowiedni rekord.

// Np. usuwanie rekordu 5
ResultSet rs;

rs.absolute (5);
rs.deleteRow () ;

Metoda updateRow() stuzy zar6wno do wpisywania jak i modyfikowania
rekordow. Przy wpisywaniu ustawiamy kursor na specjalnym "rekordzie™ —
nowym wierszu, za pomocg metody moveTolnsertRow().

Ustalenie warto$ci pol (w nowym lub modyfikowanym) rekordzie odbywa si¢ za
pomocg metod updateTTT(...) (gdzie TTT — javowy typ pola) z dwoma
argumentami: oznaczenie kolumny (indeks lub nazwa) 1 wpisywana wartosc.

Ustawienie kursora
Modyfikowanie Wpisywanie
rs.next()
lub rs.previous() rs.moveTolnsertR ow();
lub 15.absolute(n) itp...
Ustalenie wartosci pola/pél
TTT: ~Kolumna
.String \‘ 7 (indeks lub nazwa)
in¢ rs.update TTT(,)
float \
Object l k_/_/
Wartos¢ dla pola
Zapis:
rs.updateRow();
Przykiady:
rs.absolute(5); rs.moveToInsertRow();
rs.updateString(2, "Alabama'); rs.updatelnt(1, 111);
rs.updateR ow(); rs.updateString("STAN", "Nebraska'");

rs.updateRow();

7.13. Metainformacje o tabeli wynikowej

Specjalny obiekt typu ResultSetMetaData dostarcza informacji o kolumnach
tabeli wynikowej. Obiekt ten uzyskujemy od obiektu ResultSet za pomocg metody
getMetaData():

ResultSet rs ...
ResultSetMetaData rsmd = rs.getMetaData();

a nastepnie uzywamy metod interfejsu ResultSetMetaData by otrzymac¢ konkretne
informacje.

Przyktad
(mamy otwarte potaczenie Connection con 1 uzywamy dodatkowej metody
void say(String s) { System.out.print(s); })

String sel ="SELECT AUTOR.ID, AUTOR.AUTOR, POZYCJE.TYTUL,"
"WYDAWCA .NAME AS WYDAWCA " +
"FROM POZYCJE,AUTOR, WYDAWCA " +
"WHERE WYDAWCA.ID = POZYCJE.WYDID " +
"AND AUTOR.ID = POZYCJE.AUTID " +
"ORDER BY AUTOR ASC;";

try |

Statement stmt = con.createStatement ();

ResultSet rs = stmt.executeQuery(sel);

ResultSetMetaData rsmd = rs.getMetaData();

int cc = rsmd.getColumnCount () ; // liczba kolumn

for (int i = 1; i <= cc; 1i++) { // i1-ta kolumna:
say ('\n'+ rsmd.getColumnName (1)) ; // - nazwa
say (" " + rsmd.getColumnDisplaySize(i)); // - szeroko$é
say (" " + rsmd.getColumnClassName (1)) ; // - klasa Javy
say (" " + rsmd.getColumnType (i)); // - typ SQL
say (" " + rsmd.getColumnTypeName (i)) ; // - typ RDBMS

}
stmt.close() ;
con.close();

} catch (SQLException exc) {
System.out.println (exc.getMessage());

}

Uwaga:

typ SQL — stala int z java.sql. Types

klasa Javy — jakiej klasy obiekt zwroci getObject() uzyty wobec tej kolumny
ResultSet

Mozliwy wynik:

7.14. Instrukcje prekompilowane

Prekompilowane instrukcje SQL s3 przed wykonaniem wysytane do RDBMS 1
podlegaja tam prekompilacji, swoistemu przygotowaniu, ktore nastepnie
przyspiesza ich wielokrotne uzycie (wykonanie).

Oczywiscie nie ma sensu wykonywac¢ tej samej instrukcji wielokrotnie. Dlatego w
instrukcjach prekompilowanych uzywane sg znaki ? jako symbole parametrow.
Przy kazdym wykonaniu w miejsce znakow ? podstawia si¢ odpowiednie wartosci.
Instrukcje prekompilowane w Javie reprezentowane sg jako obiekty typu
PreparedStatement.

Tworzymy instrukcje prekompilowana za pomoca metody prepareStatement
(zamiast createStatement), podajac jako argument odpowiednig instrukcje SQL (z
parametrami ?). Zwykle instrukcje takie wykonujemy w petli ustalajgc wartosci
parametréw za pomoca metod set... interfejsu PrepareStatement .

Jesli TTT 1 XXX oznaczajg (r6zny) typ Javy (np. int, String, float, etc) to
(przyktadowe) wykonanie instrukcji prekompilowanej mozna przedstawic
schematycznie w nastepujacy sposob:

Parametry:/L—szy //2-gi
Connection con ... P dE

PreparedStatement st = con.prepareStatement("” ... ? ... ?..");

TTT[] wartParaml = { ... }

Podstawienie
XXX[] wartParam2 = { ... } konkretnych warto$ci

o zamiast parametréw
for (int i=0; na

1 < wartParaml.length;
i+) {
st.setTTT(1, wartParaml[i] /);
. steetXXX(2, wartParam2[i]);
st.executeUpdate();

Przyktad:

Connection con;
PreparedStatement stmt;

String[] wyd

= { "PWN", "PWE", "Czytelnik", "Amber", "HELION",
"MIKOM" };
int beginKey = 10,
try |
stmt = con.prepareStatement ("INSERT INTO WYDAWCA VALUES (?,?)");
for (int i=0; 1 < wyd.length; i++) {

stmt.setInt (1, beginKey + 1i);
stmt.setString (2, wyd[i]);
stmt.executeUpdate () ; // Uwaga: inna forma
executeUpdate ()
}
con.close();
} catch (SQLException exc) {
System.out.println (exc) ;

}

7.15. Obsluga transakcji

Transakcja to grupa instrukcji, traktowanych jako calo$¢: jezeli ktoras z nich nie
zostanie wykonana — nie mogg by¢ wykonane inne; np. przelew z konta na konto)

Sterowniki JDBC zwykle uzywaja domyslnie trybu autoCommit (wykonanie
kazdej instrukcji INSERT, DELETE, UPDATE powoduje zmiany w bazie danych;
transakcjg jest jedna instrukcja).

Connection con;
Statement stmt;

con.autoCommit(false)]

try {
stmt. executeUpdate(pierwszalnstrukcjaTransakcji);
stmt. executeUpdate(drugalnstrukcjaTransakcji);

con.commit(); // «————— | Zapis zmian do bazy danych
} catch(SQLException exc) {

con.rollback(); // < Wrycofanie sie z wykonanych
} instrukcyt

7.16. Zastosowanie architektury ""Model-View-Controller™
przy tworzeniu graficznych interfejsow BD za pomoca
komponentow Swingu

Java wyjatkowo dobrze nadaje si¢ do tworzenia graficznych interfejsow
uzytkownika dostepu do baz danych. Szczegolng rolg odgrywaja tu komponenty
Swingu ze wzgledu na ich elastycznos¢, atrakcyjnos¢ graficzng, niezalezny od
platformy i konfigurowalny wyglad oraz realizacj¢ koncepcji MVC.
Szczegolnie atrakcyjnym (w konteks$cie interakcji z bazg danych) komponentem
Swingu jest tabela (klasa JTable).

Zobaczymy teraz przyklad realizacji modelu danych tabeli dla przedstawienia
tabeli wynikowej instrukcji SELECT (i nie tylko — praktycznie kazdego
ResultSetu).

Komorki tabeli beda edytowalne, a ich edycja ma powodowa¢ zmiany w tabelach
BD.

// Model danych dla tabeli pokazujacej dowolny ResultSet

import java.util.x*;

import Jjava.sqgl.*;

import javax.swing.*;
import javax.swing.table.*;
import javax.swing.event.*;

public class DbTable extends AbstractTableModel {
private Connection conj;
private ResultSet rs;

private String[] columnNames;
private int[] columnTypes;
private boolean[] readOnly;

private String tableName = "";
private List rows;

private ResultSetMetaData md;
private boolean editable = false;

public DbTable (Connection conn, String query, ResultSet resultSet, boolean

ed) {

rs = resultSet;

editable = ed;

con = conn;

tableName = getTableName (query) ;

try {
md = rs.getMetaDatal() ;
int cc = md.getColumnCount () ;
columnNames = new String[cc];
columnTypes = new int[cc];
readOnly = new boolean(cc];
for (int col = 0; col < cc; col++) {

columnNames [col] = md.getColumnName (col+1l);
columnTypes[col] = md.getColumnType (col+l);

readOnly[col] = md.isReadOnly(col+1);

rows = new ArrayList();
while (rs.next()) {
List row = new ArrayList();
for (int 1 = 1; i1 <= getColumnCount(); i++) {
row.add (rs.getObject (1)) ;
}
rows.add (row) ;
}
rs.close();
fireTableChanged (null); // Nowa tabela
} catch (SQLException ex) {
System.out.println (ex.getMessage()) ;
}
}

// Niedoskonala wersja
private String getTableName (String qg) {

if (g == null || g.equals("")) return "";
StringTokenizer st = new StringTokenizer (q);
while (st.hasMoreTokens ()) {

String w = st.nextToken();
w = w.toUpperCase() ;

if (w.equals ("FROM")) {
String t = st.nextToken();
if (t.indexOf(',') == -1) return t;
break;
}
}
return "";

}

// Obowiazkowe metody interfejsu TableModel

public String getColumnName (int column) {
if (columnNames[column] != null) return columnNames[column];
else return "";

}

public Class getColumnClass (int column) {
String type;
Class ¢ = null;
try {
type = md.getColumnClassName (column+l) ;
c = Class.forName (type);
}
catch (Exception e) {
return super.getColumnClass (column) ;
}
return c;

}

public boolean isCellEditable(int row, int column) {
if ('editable) return false;
if (tableName.equals ("")) return false;
return !readOnly[column];

}

public int getColumnCount () {
return columnNames.length;

}

public int getRowCount () {
return rows.size();

}

public Object getValueAt (int r, int c) {
List row = (List)rows.get(r);
return row.get (c);

public String dbValue (int col, Object value) {
int type;
if (value == null) return "null";
type = columnTypes[col];

switch (type) {
case Types.CHAR:
case Types.VARCHAR:
case Types.LONGVARCHAR:
return "\'"+value.toString()+"\'";
case Types.BIT:
return ((Boolean)value) .booleanValue() 2 "1" : "0";
default:
return value.toString();

public void setValueAt (Object value, int r, int c) {
List row = (List) rows.get(r);
String oldval = row.get(c).toString();
if (oldval.equals(value.toString())) return;
String colName = getColumnName (c) ;
String query = " update " + tableName +
" set " + colName + " =" + dbValue(c, value) +
" where ";
for(int j = 0; j < getColumnCount (); Jj++) {
colName = getColumnName (j) ;
if (colName.equals("")) continue;
if (3 !'= 0) query += " and ";
query += colName +" = "+ dbvalue(j, getValueAt(r, 7J));
}
query += n; n;
try {
Statement s = con.createStatement () ;
int updCount = s.executeUpdate (query);
row.set (c, value);
System.out.println("Zmieniono rekorddéw: " + updCount);
} catch (SQLException e) {
System.out.println (query) ;
System.out.println(e.getMessage()) ;

Stworzymy rowniez prosty graficzny interfejs do wydawania zlecen SQL oraz
ogladania wynikdéw w postaci tabeli.

Przyktadowe okno tego programiku wyglada tak:

NAME | TYTUL |
Arnold K. Gosling J. Java
Banachowski L. Bazy danych. Tworzenie aplikacji
Banachowski L. Diks K. Rytter Algorytmy i struktury danych
Barteczko K. Java. Wiktady | twiczenia
Bielecki J. Java 3
Bielecki J. Java 3 RMI. Podst. programowania rozproszonego
Bielecki J. Java 4 Swing. t. I
Btaszczyk ABC HTML 2001
Boone B. Java dla programistow C i C++
Cassel P. Eddy C. Access 97. Baza danych dla kazdego
ChismarJ. 3D Studio Max 3. Efekbywna animacja w praktyce
Cytowski J. Algorytmy genetyczne. Podstawy i zastosowania
Harrington J.L. Ohiektowe bazy danych dla kazdego
Huzar Z. FrZlewicz Z. Dubil ADA 95
Lausen G. Yossen G. Ohiektowe bazy danych. Modele danych i jezyki
Le B. ABC Internetu 2000
Miller P. (red.) 3D Studio MAX 3. Doskonatost i precyzja-suplement
Mitchell 5. Active Server Pages 3.0 dla kazdeqgo
Muller R. Bazy danych. Jezyk UML w modelowaniu danych
Stephens R. Algorytmy i struktury danych z przykt. w Delphi
Systo M. Deo M. Algorytmy optymalizacji dyskretnej z programami w ...
Wirdhlewski P. Algorytrmy struktury danych i techniki programowania |2
zZhiorowa Bazy danych i sieci kamputerowe-stan i perspektyw... Lo
zhiorowa Bazy danych w lokalnych sieciach komputerowych ...
SELECT AUTOR.NAME, POZYCJE. TYTUL
FROM POZYCJE, AUTOR WHERE AUTOR.ID = POZYCJE.AUTID
ORDER BY AUTOR.NAME ASC

a jego kod pokazano ponizej:

// Testowy interfejs SQL

import java.sqgl.*;

import javax.swing.*;
import Jjavax.swing.text.*;
import Jjava.awt.event.*;
import java.awt.*;

import java.util.*;

public class TestSQL extends JFrame implements ActionListener {

private Connection con = null;
private Statement stmt;
private ResultSet rs = null;

private String query;

private JTable table = new JTable();

private JTextArea ta = new JTextArea(3,40);

private DefaultListModel history = new DefaultListModel() ;
private JList hlis = new JList (history);

private JWindow wh = new JWindow () ;

public TestSQL(String URL, String driver, String user,
String passwd) {
super ("Baza danych ksiazki");
setDefaultCloseOperation (3) ;

try {
Class.forName (driver) ;
con = DriverManager.getConnection (URL) ;

stmt = con.createStatement () ;
} catch (Exception exc) {
System.out.println (exc.getMessage());

System.exit (1) ;
}

JScrollPane scrollpane = new JScrollPane(table);
scrollpane.setPreferredSize (new Dimension (600, 400));
JPanel p = new JPanel();

p.setLayout (new BorderLayout());

ta.setLineWrap (true);

JScrollPane tsp = new JScrollPane(ta);
p.add(tsp, "Center");

JButton b = new JButton ("Execute");
b.setMnemonic ('E") ;
b.addActionListener (this) ;

p.add (b, "East"):;

p.setBorder (BorderFactory.createlLineBorder (Color.blue));
getContentPane () .add(scrollpane, "Center");
getContentPane () .add (p, "South");

createHistoryList () ;

pack () ;
setVisible (true) ;

}

public void actionPerformed (ActionEvent e) {
String new query = ta.getText();
if (new _query.equals(query)) return;
query = new_query;
if ('history.contains(query)) history.addElement (query) ;
execute (query) ;

}

void execute (String query) {
try {
rs = stmt.executeQuery(query) ;

DbTable dbt = new DbTable (con, query, rs, true);
table.setModel (dbt) ;
} catch (SQLException exc) {
System.out.println (exc.getMessage());
}
}

void createHistoryList () {

ta.addMouselistener (new MouseAdapter () {
public void mouseReleased (MouseEvent e) {

if (e.isPopupTrigger()) {
wh.pack () ;
wh.show () ;

) ;

hlis.addMouselListener (new MouseAdapter () {
public void mouseClicked (MouseEvent e) {
if (e.getClickCount () == 2) {
String s = (String) hlis.getSelectedvalue();
if (s != null) ta.setText (s):;

wh.setVisible (false);

b

JScrollPane hsp = new JScrollPane (hlis);
hsp.setPreferredSize (new Dimension (200, 300));

JPanel hp = new JPanel (new BorderLayout());
hp.setBorder (BorderFactory.createLoweredBevelBorder ()) ;
hp.add (hsp, "Center");

JPanel bhp = new JPanel();

ActionlListener hlHandler = new ActionlListener () {
public void actionPerformed (ActionEvent e) {
String cmd = e.getActionCommand() ;
if (cmd.equals("Cancel")) wh.setVisible (false);
else if (cmd.equals("Clear all")) history.clear();
else {
int index = hlis.getSelectedIndex();
if (index == -1) return;
if (cmd.equals("Clear")) history.remove (index) ;
else if (cmd.equals ("Execute")) {
String new query = (String) hlis.getSelectedValue() ;
if (new _query.equals(query)) return;
query = new_query;

wh.setVisible (false);
execute (query) ;
ta.setText (query) ;

}
}i

JButton b = new JButton ("Cancel"):;
b.addActionListener (hlHandler) ;
bhp.add (b) ;

b = new JButton ("Clear");
b.addActionListener (hlHandler) ;
bhp.add (b) ;

b = new JButton ("Clear all");
b.addActionListener (hlHandler) ;
bhp.add (b) ;

b = new JButton ("Execute");
b.addActionListener (hlHandler) ;
bhp.add (b) ;

hp.add (bhp, "South");

wh.getContentPane () .add (hp) ;
ta.addMouselistener (new MouseAdapter () {

public void mouseReleased (MouseEvent e) {

if (e.isPopupTrigger()) {
wh.setLocation(getX()+10, getY()+50);
wh.pack () ;
wh.show () ;

}

)
}

public static void main(String[] args) {

String driverName = "com.mysqgl.jdbc.Driver";
String url = "Jjdbc:mysqgl:///ksidb";

String uid = "pies";

String pwd = "kuba";

new TestSQL(url, driverName, uid, pwd);

7.17 Z.adania i ¢wiczenia

Ze wzgledu na wagg problematyki programowania dostepu do baz

danych ¢wiczenia bedg dos¢ obszerne, ale za to proste i stopniowo wprowadzajace
w temat

Uzywana w ¢wiczeniach przyktadowa baza danych ksigzek zrealizowana jest w
MySQL.

Po instalacji MySQL i sterownika Connector/J (jego plik jar mozna umiesci¢ w
katalogu jre/lib/ext) nalezy stworzy¢ baze danych uruchamiajac plik wsadowy o
nastepujacej postaci:

create database if not exists ksidb;
use ksidb;
drop table if exists AUTOR, WYDAWCA, POZYCJE;

create table if not exists AUTOR (
ID integer not null AUTO_ INCREMENT,
NAME varchar (255) not null,
PRIMARY KEY (ID)
) ;
load data infile 'AUTOR.TXT' replace into table AUTOR;

create table if not exists WYDAWCA (
ID integer not null AUTO INCREMENT,
NAME varchar (255) not null,
PRIMARY KEY (ID)
) ;
load data infile 'WYDAWCA.TXT' replace into table WYDAWCA;

create table if not exists POZYCJE (
ISBN char (13) not null,
AUTID integer not null,

TYTUL varchar (255) not null,
WYDID integer not null,
ROK int not null,
CENA real,
PRIMARY KEY (ISBN),
FOREIGN KEY (AUTID) REFERENCES AUTOR(ID),
FOREIGN KEY (WYDID) REFERENCES WYDAWCA (ID),
) ;
load data infile 'POZYCJE.TXT' replace into table POZYCJE;

Przyktadowe pliki z danymi dotaczone sg na CD.

CZESC 1. DBLETY

Proponowane "deblety" sg krotkimi programikami ¢wiczeniowymi pokazujgcymi
podstawowe dzialania z bazami danych z poziomu Javy. Tutaj pokazane sa

czgSciowymi programy, ktdre nalezy uzpehic, tak by wiasciwie dzialaty.

Zad. 1 (Laczenie z baza danvych 1 uzyskiwanie metainformaciji o bazie danych)

Program pokazuje, ze do potaczenia z BD potrzebne sa dwa kroki:

- zaladowanie odpowiedniej klasy sterownika

- uzyskanie potaczenie poprzez uzyskanie obiektu typu Connection

Od obiektu Connection mozemy otrzymac¢ metainformacje zwigzane ze sterownikiem, systemem zarzadzania BD i
samg BD poprzez uzyskanie obiektu typu DatabaseMetaData, ktory mozemy odpytywa¢ za pomocg wielu metod
interfejsu DatabaseMetaData.

Nalezy napisa¢ program, taczacy si¢ z baza danych ksigzek i uzyskujacy niektore
informacje o bazie danych.

Czesciowy gotowy program (bez cz¢sci odpowiedzialnej za potaczenie z bazg i
uzyskanie metainformacji jest pokazany ponizej. Nalezy go uzupehic o brakujace
fragmenty kodu.

import java.sqgl.*;
import java.lang.reflect.*;

public class Conl {

// tu czego$ brakuje
public Conl () {
// ... 1 tu rowniez

}

// Metoda raportujaca informacje zebrane w DatabaseMetaData

// w wywolaniach metody info podano jako argumenty nazwy metod tego
interfejsu

// a w metodzie info korszystamy z metod refleksji;

// ten sposdb oprogramowania jest zaawansowany, ale wygodny, bo duzo mniej
pisania

// 1 kod Jjest bardziej klarowny

// klauzula throws SQLException méwi o tym, ze w trakcie dziatania
reportInfo moze powstac¢ wyjatek

// SQLException, ale nie bedziemy go tu obstugiwad¢, obstuge przekazemy do
miejsca wywotania

// czyli bloku try w konstruktorze

void reportInfo() throws SQLException {

info ("getDatabaseProductName") ;
info ("getDatabaseProductVersion") ;
info ("getDriverName") ;

info ("getURL") ;

info ("getUserName") ;

info ("supportsAlterTableWithAddColumn") ;
info ("supportsAlterTableWithDropColumn") ;

info ("supportsANSI92FullSQL") ;
info ("supportsBatchUpdates") ;
info ("supportsMixedCaseldentifiers");

info ("supportsPositionedDelete") ;
info ("supportsPositionedUpdate") ;
info ("supportsSchemasInDataManipulation") ;

(
(
(
(
(
info ("supportsMultipleTransactions");
(
(
(
info ("supportsTransactions"™) ;

System.out.println("ResultSet TYPE SCROLL INSENSITIVE :" +
md.supportsResultSetType(ResultSet TYPE SCROLL INSENSITIVE)) ;
System.out.println("ResultSet TYPE SCROLL SENSITIVE :" +
md.supportsResultSetType(ResultSet TYPE_SCROLL_SENSITIVE));
System.out.println ("insertsAreDetected :" +
md.insertsAreDetected (ResultSet.TYPE SCROLL_ INSENSITIVE)) ;
System.out.println ("updatesAreDetected :" +

md.updatesAreDetected (ResultSet.TYPE SCROLL INSENSITIVE)) ;
}

// Metoda info korzysta z metod refleksji do wywolania metod podanych
"przez" nazwy.
void info (String metName) {

Class mdc = DatabaseMetaData.class;
Class[] paramTypes = { };
Object[] params = { };

String infoTyp;
if (metName.startsWith ("get"))

infoTyp = metName.substring (3,metName.length());
else infoTyp = metName;

try {
Method m = mdc.getDeclaredMethod (metName, paramTypes) ;
System.out.println (infoTyp + ": " + m.invoke(md, params)); //
dynamiczne wywotanie metody
} catch (Exception exc) { // Mozliwe powody wyJjatkdédw: nie ma takiej

metody, niewlasciwe wywolanie
System.out.println (exc);

}

public static void main (String[] args) {
new Conl () ;

Zadanie 2 (tworzenie tabeli)
Uwaga: Przed wykonaniem tego zadania nalezy zrobi¢ kopi¢ bazy.

Przyktad pokazuje nastgpujace wazne kwestie:

polecenia DDL lub SQL sg wykonywane za posrednictwem obiektu typu Statement
obiekt Statement uzyskujemy od obiektu Connection za pomoca zlecenia createStatement()

e wszelkie zmiany w bazie danych (w tym usuwanie i tworzenie tabel) wykonujemy za pomoca metody
executeUpdate aktywowanej na rzecz obiektu Statement

e '"natym samym" obiekcie Statement mozemy wykona¢ dowolnie wiele polecen SQL/DDL

e od obiektu typu SQLException (wyjatku SQL) mozemy si¢ dowiedzie¢ wielu rzeczy np. o standardowy
"SQL State" lub zalezny od dostawcy RDBMS kod btedu.

Zadanie: utworzy¢ tabele WYDAWCA z kolumnami:
ID (catkowitoliczbowy klucz pierwotny)
NAME (tancuch znakowy zmiennej dtugosci o maks. 255 znakach) — nazwa

wydawcy.

Napisa¢ program w taki sposob, by zawsze (niezaleznie od tego czy juz w bazie
istnieje tabela WYDAWCA) byta tworzona nowa tabela.

Uwaga: tabela WYDAWCA jest tabelg macierzysta dla tabeli POZYCJE (klucz
zewngetrzny tabeli POZY CJE odnosi si¢ do klucza pierwotnego tabeli
WYDAWCA; relacja ta wymusza spojnos¢ referencyjne;j).

import Jjava.sqgl.*;
public class Crel {
static public void main (String[] args) {

new Crel () ;

}

Statement stmt;

Crel() {
Connection con = null;
try {
// taczenie z baza 1 utworzenie obiektu typu Statement
} catch (Exception exc) {

System.out.println (exc);
System.exit (1) ;
}

// metoda dropTable jest nasza wtasna metoda napisana dla skrbcenia
programu

// usuwa ona tabele podana jako argument

// Aby w kazdych okolicznoéciach stworzy¢é nowa tabele WYDAWCA

// musimy usunaé ew. Jjuz istniejaca tabele WYDAWCA

dropTable ("POZYCJE"); // usuniecie tabeli pochodneij, bedacej w relacji z
tabela WYDAWCA

dropTable ("WYDAWCA"); // usiniecie tabeli WYDAWCA

String crestmt =

try {

// wykonanie polecenia zapisanego w crestmt

} catch (SQLException exc) { // przechwycenie
wyjatku:

System.out.println ("SQL except.: " + exc.getMessage());
System.out.println("SQL state : " + exc.getSQLState()):;
System.out.println ("Vendor errc: " + exc.getErrorCode());
System.exit (1) ;

} finally {
try {

stmt.close () ;
con.close () ;

} catch (SQLException exc) {
System.out.println (exc);
System.exit (1) ;

}

private void dropTable (String tname) {
/] ..

Cwiczenie dodatkowe:
1. przywrocic¢ baze danych do postaci wyjsciowe;j
2. skompilowac 1 wykona¢ program bez odwotania dropTable("POZYCJE")
3. obejrze¢ doktadnie komunikaty o wyjatkach

Zad. 3 (wpisywanie rekordow do tabeli)

Doda¢ do tabeli WYDAWCA trzy rekordy reprezentujace jakich§ wydawcow.
Przyklad ilustruje nastepujace kwestie:

o instrukcja SQL do wpisywania ma posta¢ INSERT... (w kilka r6znych
formach)

e przy wpisywaniu rekordow uzywamy executeUpdate(...)

o przy wpisywaniu 1 modyfikowaniu metoda ta zwraca liczbg
wpisanych/zmodyfikowanych rekordow,

o dane typu znakowego (CHAR, VARCHAR, LONGVARCHAR) s3
podawane w SQL w apostrofach

import Jjava.sqgl.*;
public class Insl {
static public void main(String[] args) {

new Insl();

}

Statement stmt;

Insl () {

Connection con = null;

try {
/...

} catch (Exception exc) {
System.out.println (exc);
System.exit (1) ;

}

String[] ins = { "INSERT INTO WYDAWCA VALUES (1, \'Wyd 1\")",
"INSERT INTO WYDAWCA VALUES (2, \'Wyd 2\")",
"INSERT INTO WYDAWCA VALUES (3, \'Wyd 3\'")",
i
int insCount = 0; // ile rekorddéw wpisano
try {
for (int i=0; i < ins.length; i++) // wpisywanie rekorddw
/).

Dodatkowe ¢wiczenie:
wykona¢ program ponownie i
zobaczy¢ jak naruszone jest ograniczenie jednoznacznosci klucza pierwotnego

Modyfikacja: uzy¢ prekompilowanych instrukc;ji.
Ta modyfikacja ilustruje uzycie instrukcji prekompilowanych:

ins. prekompilowana przygotowywana i wykonywana jest za pomoca

obiektu typu PreparedStatement

« Obiekt ten jest tworzony poprzez (inne!) odwotanie do obiektu Connection:
prepareStatementy(...)

« argumentem prepareStatement jest String, w ktérym wystepuja znaki
zapytania — miejsca na "parametry" podstawiane przy kolejnych
wykonaniach polecenia prekompilowanego

« metody set... interfejsu PreparedStatement pozwalaja podstawia¢ za
parametry-znaki zapytania kolejne wartosci

« trzeba wiedziec jaki jest typ wartosci (pola) 1 uzy¢ odpowiedniej metody

set...

/...
String[] wyd ={ "PWN", "PWE", "Czytelnik", "Amber", "HELION", "MIKOM" };
int beginKey = 10,
insCount 0;
try {
// przygotowanie instrukcji prekompilowanej
stmt = con.prepareStatement ("INSERT INTO WYDAWCA VALUES (?,?)");
for (int i=0; i < wyd.length; i++) {
BT
}

con.close() ;
} catch (SQLException exc) {
System.out.println (exc);
}
VA

Zadanie 4 (SELECT i ResultSet)

Uwaga: aby wykonac to zadanie nalezy przywroci¢ wyjsciowa wersj¢ bazy

Wyprowadzi¢ z tabeli POZY CJE wszystkie rekordy, speiniajgce warunek CENA >
30 zt 1 pokazac dla kazdego z nich tytut i cen¢ w PLN 1 (obliczong) ceng w USD.

Program ma ilustrowac nastgpujace kwestie:

« instrukcja SELECT wykonywana jest za pomoca executeQuery(..)

« executeQuery zwraca obiekt typy ResultSet (tzw. tabela wynikowa)

« z ResultSet zwigzany jest tzw. kursor, ktory wskazuje biezacy rekord w
tabeli wynikowej

« inicjalnie kursor ustawiony jest przed pierwszym rekordem tabeli wynikowej

« kursor mozemy przesuwac (tylko w strong konca tabeli, o ile nie
wymagalis$my tego, by ResultSet mogt by¢ "skrolowany") za pomoca
metody next() interfejsu ResultSet

« wartosci poszczegdlnych kolumn z biezacego rekordu mozemy pobrac za
pomoca metod get...

String sel = "SELECT AUTOR, TYTUL, CENA FROM POZYCJE WHERE CENA > 40";
try {
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(sel);
while (rs.next()) {
String tytul = // ... 2
float cena = // ... ?
float usd = cena/4;
System.out.println("Tytul: " + tytul);
System.out.println("Cena : " + cena + " PLN");
System.out.println("USD : " 4+ usd + " USD");
(

System.out.println("------—--—--—-—--—-- ¥
}
stmt.close();
con.close();
} catch (SQLException exc) {
System.out.println (exc.getMessage());

}

Dodatkowe zadanie: wyprowadzi¢ wszystkie rekordy tabeli wynikowej powstatej
na skutek wykonania instrukcji SELECT od konca tabeli; a nastgpnie wyprowadzi¢
rekordy 3, 71 9.

To zadanie winno zilustrowac:

« przewijalny ResultSet (typ deklarujemy w createStatement)

« absolutne pozycjonowanie w ramach tabeli wynikowej

« uzycie metainformacji o kolumnach tabeli wynikowej (obiekt typu
ResultSetMetaData mozemy uzyska¢ za pomocg zlecenia wobec ResultSet —
getMetaData(), nast¢pnie mozemy go "odpytac¢" o rézne informacje za
pomocg metod interfejsu ResultSetMetaData)

o uniwersalno$¢ metody getString: jesli potrzebna nam tylko znakowa
reprezentacja informacji zawartej w kolumnach tabeli, getString (uzyte
wobec biezgcego rekordu ResultSet) dokona wiasciwej konwersji dla
kazdego typu danych w BD (oprocz typow definiowanych i SQL3

String sel = // ... ?

try {
Statement stmt =

con.createStatement (ResultSet.TYPE SCROLL INSENSITIVE,
ResultSet.CONCUR READ ONLY);
ResultSet rs = stmt.executeQuery(sel);
ResultSetMetaData rsmd = rs.getMetaData();
int cc = rsmd.getColumnCount () ;
for (int i = 1; i <= cc; 1i++)
System.out.print (rsmd.getColumnLabel (i) + " ") ;

System.out.println("\n--—-—----—-=---—-——-—-—-————— przewijanie do goéry");
/oo
System.out.println("\n--———------"-"-"----——————— pozycjonowanie abs.");
int[] poz = { 3, 7, 9 };
for (int p = 0; p < poz.length; p++) {

System.out.print("[" + pozlp] + " 1 ™),

/oo

for (int i = 1; 1 <= cc; i++)

System.out.print (rs.getString(i) + ", ");
System.out.println("");
}
stmt.close();
con.close () ;
} catch (SQLException exc) {
System.out.println (exc.getMessage());

}

CZESC 2. Java jako jezyk tworzenia interfejséw bazodanowych

Druga cz¢$¢ ¢wiczen polega na przedstawieniu Javy jako wygodnego jezyka do
tworzenia graficznych interfejsow uzytkownika dostepu do baz danych.
Prezentowany wczesniej (w p. 16) program korzysta z uniwersalnego modelu
danych tabeli Swing, odzwierciedlajacego tabele wynikowa zapytania SQL lub
jakikolwiek inny ResultSet.

Program sktada si¢ z dwoch plikéw zrodtowych, definiujacych dwie klasy o tych
samych nazwach co pliki:

« DbTable.java — odzwierciedla dowolny ResultSet w modelu danych tabeli
Swingowej (JTable),

o TestSQL.java — jest graficznym interfejsem, umozliwiajagcym uzyskiwanie
wynikow zapytan SELECT w postaci tabeli JTable, dla ktérej modelem jest
klasa DbTable.

Skompilowa¢ obie klasy 1 uruchomi¢ program.

Po uruchomieniu TestSQL jako glownej klasy uzyskujemy mozliwos¢ wpisywania
polecen SQL w wielowierszowym polu edycyjnym u dotu okna. Kliknigcie w
przycisk Execute lub nacis$niecie alt-e (mnemonika) powoduje wykonanie
instrukcji SELECT (nie tylko!) i przedstawienie jej wynikéw w tabeli w centrum
okna. Tabela pozwala na bezposrednie edytowanie pol w bazie danych (dbl-click
na polu tabeli) — jesli jest to mozliwe na podstawie danego ResultSet.

Wydane polecenia SQL gromadzone sg w postaci "listy historii"/

Mozemy do niej sigga¢ poprzez prawy klik na polu edycyjnym.

Podwojne kliknigcie na elemencie historii (zapamig¢tanym poleceniu) powoduje
jego przepisanie do pola edycyjnego.

U dotu okna listy historii znajduja si¢ przyciski o nastepujacym znaczeniu:
"Cancel" - zamknij liste

"Clear" — usun zaznaczony element

"Clear all" — usun wszystki elementy historii

"EXxecute" — wykonaj zaznaczong na liScie historii instrukcje SQL

Komentarze:

1. Model danych tabeli (plik DbTable.java) jest do$¢ uniwersalny — pozwala
przedstawi¢ dowolny ResultSet w postaci tabeli Swingowe;j

2. Konkretne GUI (TestSQL) moze by¢ dowolnie zmieniane bez ingerencji w
zwigzki DB — Swing table model

3. Realizacja tego GUI zaje¢ta mato czasu: okazuje si¢, ze program w Javie o
zaawansowanych mozliwo$ciach moze liczy¢ mniej niz 200 wierszy (tzn.
niezwykle krotki). Nb. wigkszos¢ kodu tego programu zajmuje si¢ obstuga
listy historii.

Stworzy¢ bardziej interesujace GUI. Zastanowi¢ si¢ w jaki sposob mozna by byto
uzyskiwac w klasie DBTable dostep do ResultSet 1 prezentacj¢ go w modlu bez
przepisywania rekordéw do wewnetrznych struktur danych,

