
7. Java i bazy danych (JDBC)

Java jest doskonałym środowiskiem programowania dostępu do baz danych.

Przyjrzymy się więc mechanizmom umożliwiającym pisanie takich programów.

7.1. Przykładowa baza danych

Schemat przykładowej bazy danych książek (może część BD księgarni

internetowej) przedstawia poniższy rysunek.

Baza składa się z trzech powiązanych tabel (AUTOR, POZYCJE, WYDAWCA).

Pola ID (identyfikatory) są kluczami głównymi w tabelach AUTOR i

WYDAWCA, w tabeli POZYCJE odnoszą sie do nich klucze zewnętrzne (obce)

AUTID i WYDID. Pole ISBN jest kluczem głownym tabeli POZYCJE. Podobnej

bazy będziemy używac w przykładowych programach tego rozdziału.

Poniżej przedstawiono plik wsadowy z instrukcjami dla MySQL, które tworzą

przykładową bazę. Na tej podstawie można się zorientować jak ta baza wygląda.

create database if not exists ksidb;

use ksidb;

drop table if exists AUTOR;

drop table if exists WYDAWCA;

drop table if exists POZYCJE;

create table AUTOR (

 AUTID integer not null AUTO_INCREMENT,

 NAME varchar(255) not null,

 PRIMARY KEY(AUTID)

) ENGINE=INNODB;

create table WYDAWCA (

 WYDID integer not null AUTO_INCREMENT,

 NAME varchar(255) not null,

 PRIMARY KEY(WYDID)

) ENGINE=INNODB;

load data infile '../BazySql/ksidb/AUTOR.TXT' replace into table AUTOR;

load data infile '../BazySql/ksidb/WYDAWCA.TXT' replace into table WYDAWCA;

create table POZYCJE (

 ISBN char(13) not null,

 AUTID integer not null,

 TYTUL varchar(255) not null,

 WYDID integer not null,

 ROK integer not null,

 CENA real,

 PRIMARY KEY(ISBN),

 INDEX(AUTID),

 FOREIGN KEY(AUTID) REFERENCES AUTOR(AUTID),

 INDEX(WYDID),

 FOREIGN KEY(WYDID) REFERENCES WYDAWCA(WYDID)

) ENGINE=INNODB;

load data infile '../BazySql/ksidb/POZYCJE.TXT' replace into table POZYCJE;

Podobny skrypt dla Derby w trybie Embedded :

connect 'jdbc:derby:ksidb;create=true';

drop table POZYCJE;

drop table AUTOR;

drop table WYDAWCA;

create table AUTOR (

 AUTID integer not null generated by default as identity,

 NAME varchar(255) not null,

 PRIMARY KEY(AUTID)

);

create table WYDAWCA (

 WYDID integer not null generated by default as identity,

 NAME varchar(255) not null,

 PRIMARY KEY(WYDID)

);

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE

(null,'AUTOR','AUTOR.TXT',null,null,null,0);

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE

(null,'WYDAWCA','WYDAWCA.TXT',null,null,null,0);

create table POZYCJE (

 ISBN char(13) not null,

 AUTID integer not null,

 TYTUL varchar(255) not null,

 WYDID integer not null,

 ROK integer not null,

 CENA real,

 PRIMARY KEY(ISBN),

 FOREIGN KEY(AUTID) REFERENCES AUTOR(AUTID),

 FOREIGN KEY(WYDID) REFERENCES WYDAWCA(WYDID)

);

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE

(null,'POZYCJE','POZYCJE.TXT',null,null,null,0);

7.2. Dlaczego Java?

Zazwyczaj "poważne" RDBMS nie dostarczają gotowych (zadowalających)

rozwiązań w zakresie graficznych interfejsów dostępu do baz danych lub nieco

bardziej zaawansowanych środków przetwarzania danych na styku klient – serwer

bazodanowy.

Zamiast tego udostępniane są programistyczne interfejsy (API), dzięki którym

można takie problemy rozwiązywać.

Każdy RDBMS ma zdefiniowane dla różnych języków programowania

odpowiednie interfejsy programistyczne dostępu do BD (C, C++, Cobol, PL/I etc;

nie wspomnę już o Visual Basicu czy językach specyficznych dla danego

RDBMS).

Są to jednak biblioteki dynamiczne, skompilowane (i zlinkowane) dla konkretnych

platform sprzętowych i systemowych. Każde takie API różni się w też w zależności

od RDBMS.

Programistyczny interfejs dostępu do baz danych z poziomu Javy

JDBC (Java Database Connectivity API):

• jest niezależny od maszyny bazodanowej (RDBMS)

• jest niezależny od platformy sprzętowej

• jest niezależny od systemu operacyjnego

Jest zatem jednolity i uniwersalny, a do tego łatwy w użyciu i aktualny (np.

umożliwia działania, wykorzystujące nowe konstrukcje SQL – przewijalne tabele

wynikowe czy typy danych SQL3 – oraz programowanie z uwzględnieniem

wymagań środowisk rozproszonych).

Wszystko co chcielibyśmy robić z dowolnymi relacyjnymi bazami danych z

poziomu programów użytkowych – możemy zrobić w Javie, w jej duchu i

konwencji, mając jednocześnie do dyspozycji przebogate środowisko Javy.

Znając Javę możemy szybko i łatwo tworzyć aplikacje bazodanowe, które

wykraczają poza samą interakcję z RDBMS i mogą włączać wszystko co Java ma

do zaoferowania (programowanie sieciowe, rozproszone, multimedialne itp.)

7.3. JDBC

JDBC jest zestawem klas i interfejsów, umożliwiających:

1. Połączenie z bazą danych

2. Wykonywanie instrukcji SQL na bazie danych

3. Otrzymywanie i przetwarzanie wyników instrukcji SQL (np. tabel

wynikowych)

Wersja JDBC 1.0 dostarcza podstawowych środków działania na BD.

Wersje JDBC 2.0 i - aktualna JDBC 4.0 dają dodatkowe możliwości np.

• przewijalne i modyfikowalne tabele wynikowe,

• bezpośrednie modyfikowanie tabel wynikowych za pomoc metod klasy

Statement

• wsadowe przetwarzanie instrukcji SQL

• obsługę typów danych SQL3

• wspomaganie JNDI (Java Naming and Directory Services) – czyli

możliwość katalogowania i prowadzenia nazw źródeł danych na poziomie

logicznym (podobnie jak to jest w hierarchicznym systemie plikowym)

• pooling połączeń (przechowywanie puli połączeń w pamięci w celu ew.

ponownego użycia i przyspieszenia transakcji)

• transakcje rozproszone (przesyłanie danych w sieci do takich klientów jak

np. przeglądarki lub laptopy)

• dostęp do praktycznie każdej formy tabularyzowanych danych (w tym

arkuszy kalkulacyjnych i zwykłych plików),

• obsługę typu XML.

JDBC pozwala na działanie w architekturze dwu- i trzy-warstwowej.

Architektura dwuwarstwowa

Źródło: JDBC User's Guide. Javasoft

Architektura trzywarstwowa

Źródło: JDBC User's Guide. Javasoft

Zalety warstwy pośredniej: efektywność, kontrola, bezpieczeństwo, ułatwienie

utrzymywania i rozwoju systemu, możliwości integracji z innymi podsystemami

(middleware).

7.4. Sterowniki JDBC

Aby połączyć się z bazą danych i móc wykonywać na niej operacje należy

skorzystać ze specjalnego sterownika, który tłumaczy odwołania z poziomu Javy

na odwołania właściwe dla danego RDBMS.

Istnieją 4 typy sterowników.

Typ sterownika Wyjaśnienia Zastosowanie

1 - JDBC-ODBC bridge

+ sterownik ODBC

Dostęp do BD przez ODBC.

JDBC-ODBC bridge

komunikuje się ze

sterownikiem ODBC a ten z

bazą danych.

Natywny kod ODBC musi

być załadowany po stronie

klienta.

Wszelkie BD spełniające

protokół ODBC.

Kiedy nie ma problemów

z ładowaniem natywnego

kodu po stronie klienta

2 - Native-API

partly-Java driver

Sterownik JDBC tłumaczy

odwołania na natywny kod

konkretnego API klienta

danego RDBMS.

Sterowniki są

specyficzne dla RDBMS

dostarczane przez firmy

np. Oracle, Sybase, IBM

DB2 (UDB) etc.

3 - JDBC-Net

pure Java driver

Tylko kod javowy.

Odwołania tłumaczone są na

uniwersalny, niezależny od

Najbardziej elastyczne

rozwiązanie, ale w

przypadku użycia w

RDBMS, protokół sieciowy, a

następnie przez serwer na

kody specyficzne dla RDBMS

.

Internecie wymaga, by

sterownik/serwer

zapewniały odpowiedni

poziom bezpieczeństwa

4 - Native-protocol

pure Java driver

Tylko kod javowy.

Sterownik tłumaczy

odwołania na specyficzny dla

danego RDBMS protokół

sieciowy

Pozwala na b. efektywną,

bo bezpośrednią

komunikację klient-

serwer bazodanowy.

Doskonałe w intranecie.

Głównym źródłem są

producenci RDBMS np.

Oracle, Sybase, Informix,

IBM DB2, Inprise

InterBase, Microsoft

SQL Server

7.5. Łączenie z bazą danych

Połączenie z bazą danych wymaga dwóch kroków:

• załadowania sterownika JDBC,

• zażądania od sterownika połączenia i ew. uzyskania go w postaci obiektu

typu Connection.

Załadowanie sterownika odbywa się za pomocą wywołania statycznej metody

klasy Class o nazwie forName i z argumentem – nazwa klasy (sterownika). Ogólnie

metoda ta zwraca obiekt-klasę o podanej nazwie. Jeśli klasa ta nie jest załadowana

do JVM, następuje jej załadowanie. Klasy-sterowniki są tak napisane, że przy ich

ładowaniu rejestrują się jako obiekty typu Driver.

Zwykle obiekt ten (klasa) nie interesuje nas (dlatego w wywołaniu pomijamy

zwracany rezultat).

Przykłady:

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Class.forName("postgresql.Driver");

 Class.forName("oracle.jdbc.driver.OracleDriver");

 Class.forName("com.mysql.jdbc.Driver");

Nad załadowanymi sterownikami kontrolę sprawuje DriverManager (nazwa klasy).

Prowadzi on listę zarejestrowanych sterowników.

Statyczna metoda getConnection z klasy DriverManager pozwala na uzyskanie

połączenia z bazą, której URL podajemy jako argument metody.

DriverManager przegląda listę zarejestrowanych sterowników i wybiera ten, który

może połączyć się z podaną bazą.

Po połączeniu z bazą zwracany jest obiekt typu Connection, który reprezentuje

połączenie.

Connection con = DriverManager.getConnection(dbUrl,

 userID,

 password);

lub (jeśli dopuszczalne jest "domyślne" połączenie – bez podania nazwy

użytkownika i hasła)

Connection con = DriverManager.getConnection(dbUrl);

Wszystkie argumenty metody getConnection są typu String.

Forma lokatorów (urli) zależna jest od sterownika i konkretnej bazy danych np.

// źródło danych ODBC o nazwie ksidb

String dbUrl = "jdbc:odbc:ksidb"

// łączenie z Oraclem z dodatkowymi specyfikacjami

String dbUrl = "jdbc:oracle:thin:user/password@(description=(address_list=(

address=(protocol=tcp) (host=dbmachine)(port=1521)))(source_route=yes)

(connect_data=(sid=ksidb)))";

// MySQL:

String dbUrl = "jdbc:mysql://localhost/ksidb";

Uwaga: klasa sterownika powinna być dostępna dla odwolań z naszego programu.

Odpowiedni JAR można np. umieścić w katalogu jre/lib/ext.

W trakcie ładowania klasy sterownika i przy próbie połączenia mogą powstać

wyjątki, które musimy obsłużyć.

....

 String driverName = "com.mysql.jdbc.Driver";

 String url = "jdbc:mysql://localhost/ksidb";

 String uid = "jakis";

 String pwd = "haslo";

 Connection con;

 try {

 Class.forName(driverName);

 con = DriverManager.getConnection(url, uid, pwd);

 } catch (ClassNotFoundException exc) { // brak klasy sterownika

 System.out.println("Brak klasy sterownika");

 System.out.println(exc);

 System.exit(1);

 } catch(SQLException exc) { // nieudane połączenie

 System.out.println("Nieudane połączenie z " + url);

 System.out.println(exc);

 System.exit(1);

}

.....

Możemy też przechwycić oba wyjątki w jednej klauzuli catch(Exception exc) ...

Innym sposobem uzyskania połaczenie jest wykorzystaie serwisów JNDI oraz tzw.

źródeł danych - zapoznamy sie z nim w rozdziale "Aplikacje WEB".

Sterowniki spełniające specyfikację JDBC 4.0 (jeśli odpowiednie JARy spełniają

protokól Service Provider) mogą być odnajdywane bez jawnego załadowania klasy.

Np. jeśli nasza aplikacja ma dostęp do pliku derby.jar (jest na ścieżce dostępu klas),

to uzyskać połaczenie możemy prościej:

Connection con = DriverManager.getConnection("jdbc:derby:ksidb");

Dzieje się tak dlatego, że w derby.jar w katalogu META-INF/services znajduje się

plik java.sql.Driver, zawierający nazwę klasy sterowanika.

Przy tej okazji - parę słów o Derby.

Derby jest niewielkim i wygodnym w użyciu SZBD, całkowicie napisanym w

Javie, dostarczanym w dystrybucji Javy 6.

Może działać w dwóch trybach:

• embedded - SZBD działa w tej samej maszynie wirtualnej co nasza aplikacja

i nie wymaga działania serwera,

• klient-serwer (wymaga startu serwera Derby)

Bardzo ważną kwestią jest ustalenie systemowej właściwości

Javy derby.system.home, wskazującej na katalog, w którym zajdują się bazy

danych. Jesli tej właściwości nie ustalimy, to zostanie przyjęty bieżący katalog lub

katalog podany bezpośrednio przy specyfikacji URLa bazy danych.

Właściwość derby.system.home możemy określić podając opcję -

Dderby.system.home=nazwa_katalogu przy starcie JVM (czy to nazej aplikacji,

czy serwera Derby czy też CLI, który w Derby nazywa się ij.

Załóżmy, że:

JAVA_HOME wskazuje na katalog instalacyjny Javy i katalog

%JAVA_HOME%/bin jest naścieżce PATH

DERBY_HOME - katalog instalacyjny Derby,

DERBY_JARS - zawiera nazwy niezbędnych bibliotek JAR z

katalogu %DERBY_HOME%/lib, w szczególności: (rozdzielone srednikami):

 %DERBY_HOME%/lib/derby.jar

%DERBY_HOME%/lib/derbynet.jar

;%DERBY_HOME%/lib/derbyclient.jar

%DERBY_HOME%/lib/derbytools.jar

Start CLI w trybie embedded ze skryptem tworzącym bazę danych ksidb w

katalogu D:\DerbyDbs

java -Dderby.system.home=D:/DerbyDbs -cp "%DERBY_JARS" -

Dij.protocol=jdbc:derby:

org.apache.derby.tools.ij nazwa_skryptu

Start aplikacji App w trybie embedded Derby (dostęp do bd ksidb umieszczonej w

katalogu D:\DerbyDbs):

java -Dderby.system.home=D:/DerbyDbs -cp %DERBY_HOME%/derby.jar App

// dostęp do ksidb w programie:

Connection con = DriverManager.getConnection("jdbc:derby:ksidb");

Start serwera Derby (z ustaleniem derby.system.home):

java -Dderby.system.home=D:/DerbyDbs -cp "%DERBY_JARS"

org.apache.derby.drda.NetworkServerControl start

Dostęp do bazy danych za pomocą protokołu sieciowego (po starcie serwera):

 String driverName = "org.apache.derby.jdbc.ClientDriver";

 String url = "jdbc:derby://localhost/ksidb";

 try {

 Class.forName(driverName).newInstance();

 Connection con = DriverManager.getConnection(url);

 // ...

 }

lub jeśli dostępnym JARem jest tylko derbyclient.jar:

try {

 Connection con =

DriverManager.getConnection(jdbc:derby://localhost/ksidb);

// ...

}

Dostęp w trybie embedded do bazy danych umieszczonej w katalogu D:\DerbyDbs

(niezależnie od tego czy właściwość derby.system.home została ustalona czy nie):

Connection con = DriverManager.getConnection(jdbc:derby:D:/DerbyDbs/ksidb);

Po uzyskaniu połączenia otrzymany obiekt Connection wykorzystujemy do

operacji na bazie danych za pośrednictwem innych obiektów, który uzyskamy od

obiektu Connection.

Pokazuje to poniższy rysunek.

Po zakończeniu operacji na bazie danych warto zwolnić uzyskane zasoby (takie jak

Statement) oraz połączenie, wywołując odpowiednie metody close() na rzecz

obiektów reprezentujących zasoby/ połączenie.

Nie zawsze jest to obowiązkowe, bo zwykle zasoby są zwalniane automatycznie

przy zakończeniu programu, ale należy do dobrej praktyki programistycznej, mogą

się bowiem zdarzyć takie sytuacje, kiedy zasoby nie zostaną automatycznie

zwolnione.

7.6. Uzyskiwanie metainformacji o bazie danych

(przykład)

 Connection con;

 DatabaseMetaData md; // metadane

 // ... uzyskane połączenie

// reprezentuje obiekt con

// uzyskanie metadanych

 md = con.getMetaData();

 // odpytywanie metadanych o różne

 // informacje

 md.getDatabaseProductName();

 md.getDatabaseProductVersion();

 md.getDriverName();

 md.getURL();

 md.getUserName();

 md.supportsAlterTableWithAddColumn();

 md.supportsAlterTableWithDropColumn();

 md.supportsANSI92FullSQL();

 md.supportsBatchUpdates();

 md.supportsMixedCaseIdentifiers();

 md.supportsMultipleTransactions();

 md.supportsPositionedDelete();

 md.supportsPositionedUpdate();

 md.supportsSchemasInDataManipulation();

 md.supportsTransactions();

 md.supportsResultSetType(ResultSet.TYPE_SCROLL_INSENSITIVE);

 md.supportsResultSetType(ResultSet.TYPE_SCROLL_SENSITIVE);

 md.insertsAreDetected(ResultSet.TYPE_SCROLL_INSENSITIVE);

 md.updatesAreDetected(ResultSet.TYPE_SCROLL_INSENSITIVE);

Przykładowe wyniki:

DatabaseProductName: ACCESS

DatabaseProductVersion: 3.5 Jet

DriverName: JDBC-ODBC Bridge (ODBCJT32.DLL)

URL: jdbc:odbc:ksidb

UserName: admin

supportsAlterTableWithAddColumn: true

supportsAlterTableWithDropColumn: true

supportsANSI92FullSQL: false

supportsBatchUpdates: true

supportsMixedCaseIdentifiers: true

supportsMultipleTransactions: true

supportsPositionedDelete: false

supportsPositionedUpdate: false

supportsSchemasInDataManipulation: false

supportsTransactions: true

ResultSet TYPE_SCROLL_INSENSITIVE :true

ResultSet TYPE_SCROLL_SENSITIVE :false

insertsAreDetected :false

updatesAreDetected :false

DatabaseProductName: MySQL

DatabaseProductVersion: 3.23.33-debug

DriverName: Mark Matthews' MySQL Driver

URL: jdbc:mysql:///test

UserName: Admin

supportsAlterTableWithAddColumn: true

supportsAlterTableWithDropColumn: true

supportsANSI92FullSQL: false

supportsBatchUpdates: false

supportsMixedCaseIdentifiers: false

supportsMultipleTransactions: true

supportsPositionedDelete: false

supportsPositionedUpdate: false

supportsSchemasInDataManipulation: false

supportsTransactions: false

ResultSet TYPE_SCROLL_INSENSITIVE :true

ResultSet TYPE_SCROLL_SENSITIVE :false

insertsAreDetected :false

updatesAreDetected :false

Interfejs DatabaseMetaData zawiera również metody umożliwiające uzyskanie

informacji o:

• podtrzymywanych przez RDBMS typach danych

• zestawie tabel w bazie danych.

7.7. Wykonywanie instrukcji SQL

Do wykonywanie instrukcji SQL służy obiekt typu:

 Statement (oznacza instrukcje SQL)

a także obiekty typu interfejsów pochodnych:

 PreparedStatement (prekompilowane instrukcje SQL)

 CallableStatement (przechowywane procedury)

Uzyskujemy je od obiektu typu Connection za pomocą odwołań (odpowiednio):

createStatement(...), prepareStatement(...) i prepareCall(...)

Poniższy schemat obrazuje sposób posługiwania się tymi interfejsami.

Różnice pomiędzy w/w metodami są następujące.

Argumenty metod

Metody

SELECT... CREATE TABLE...

DROP TABLE...

INSERT...

UPDATE...

DELETE...

executeQuery(...) zwraca tabelę wynikową -

executeUpdate(...) - zwraca liczbę

zmodyfikowanych

rekordów lub –1 (np. dla

CREATE...)

execute(...) wykonuje dowolną instrukcję SQL i zwraca wartość

boolean (true – jeśli powstała tabela wynikowa, false

– jeśli nie; prawdziwy wynik – tabelę wynikową lub

liczbę zmodyfikowanych rekordów uzyskujemy za

pomocą dodatkowego odwołania do obiektu

Statement)

Ten sam obiekt typu Statement może być wielokrotnie używany do wykonania

różnych instrukcji SQL np.

Statement stmt;

...

String[] creTab = { "CREATE TABLE A (ID INTEGER, NAME CHAR(30))",

 "CREATE TABLE B (ID INTEGER, ADR CHAR(30))",

};

...

for (int i = 0; i < creTab.length; i++) {

 stmt.executeUpdate(creTab[i]);

}

stmt.executeUpdate("INSERT INTO A VALUES(1, 'Pies')");

stmt.executeUpdate("INSERT INTO B VALUES(1, 'Buda')");

...

7.8. Obsługa wyjątków SQLException

Zarówno createStatement() jak i metody executeUpdate(...), executeQuery(...) i

execute(...) mogą generować wyjątki typu SQLException.

Wyjątki te sygnalizują błędy, wykrywane albo przez sam sterownik (np. brak

jakiegoś trybu działania) , albo przez RDBMS (np. błędy składniowe w SQL lub

próba naruszenia ograniczeń – jednoznaczności, spójności referencyjnej itp.).

Wyjątki te musimy obsługiwać.

A w trakcie obsługi możemy uzyskać wiele cennych informacji o przyczynie błędu.

Na przykład:

Connection con;

Statement stmt;

try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 con = DriverManager.getConnection("jdbc:odbc:ksidb");

 stmt = con.createStatement();

 } catch (Exception exc) {

 System.out.println(exc);

 System.exit(1);

 }

 String crestmt = "CREATE TABLE WYDAWCA (" +

 " ID INTEGER, " +

 " NAME VARCHAR(120), " +

 " CONSTRAINT WYDPK PRIMARY KEY(ID))";

 try {

 stmt.executeUpdate(crestmt);

 System.out.println("Table created.");

 } catch (SQLException exc) {

 // różne informacje, które można uzyskać o wyjątku SQLException

 System.out.println("SQL except.: " + exc.getMessage()); // komunikat

 System.out.println("SQL state : " + exc.getSQLState()); // kod std

 System.out.println("Vendor errc: " + exc.getErrorCode()); // kod RDBMS

 System.exit(1);

 } finally { // klauzula finally wykona się zawsze

 try { // wykorzystujemy to do prawidłowego zwolnienia zasobów

 stmt.close();

 con.close();

 } catch(SQLException exc) {

 System.out.println(exc);

 System.exit(1);

 }

 }

7.9. Instrukcja SQL SELECT, tabele wynikowe, ResultSet

i kursory

W wyniku wykonania instrukcji SELECT powstaje tabela wynikowa.

Jest ona w Javie dostępna poprzez obiekt typu ResultSet.

Przy czym:

• ResultSet możemy przeglądać za pomocą kursora,

• kursor inicjalnie jest ustawiony przed pierwszym rekordem tabeli

wynikowej,

• w zależności od typu ResultSet możemy przemieszczać kursor tylko w

kierunku od początku tabeli wynikowej do końca (typ:

ResultSet.TYPE_FORWAD_ONLY) lub w obu kierunkach (typy

ResultSet.TYPE_SCROLL_INSENSITIVE lub

ResultSet.TYPE_SCROLL_SENSITIVE).

• interfejs ResultSet zawiera metody przemieszczające kursor, z których

korzystamy przy przeglądaniu tabeli wynikowej.

• metody przemieszczające kursor zwracają wartość logiczną false, gdy

żądane przemieszczenie kursora nie jest możliwe np. polecenie przejścia do

następnego rekordu wyprowadza nas poza tabelę,

• jeśli kursor ustawiony jest na jakimś rekordzie tabeli wynikowej, to możemy

pobrać wartości jego pól za pomocą odpowiednich metod interfejsu

ResultSet; metody te zapewniają automatyczne przekształcenie typów SQL

do odpowiadających im typów Javy

7.10. Przemieszczanie kursora

W kontekście:

ResultSet rs = stmt.executeQuery(query);

Odwołanie Ustawia kursor Typ ResultSet

nieprzewijalny przewijalny

rs.beforeFirst(); Przed pierwszym rekordem NIE TAK

rs.first(); Na pierwszym rekordzie NIE TAK

rs.next(); Na następnym rekordzie TAK TAK

rs.previous(); Na poprzednim rekordzie NIE TAK

rs.last(); Na ostatnim rekordzie NIE TAK

rs.afterLast(); Za ostatnim rekordem NIE TAK

rs.absolute(n); Na n-tym rekordzie NIE TAK

rs.relative(n); Na rekordzie oddalonym o n

miejsc od bieżącego (jeśli n

< 0 – to do początku)

NIE TAK

Przykład:

ile rekordów zawiera tabela wynikowa?

int count = 0;

while (rs.next()) count++;

lub:

rs.last();

int count = rs.getRow() // numer bieżącego rekordu

Uwaga: działanie na ResultSet nie oznacza, że wszystkie rekordy tabeli wynikowej

są "ściągane" z RDBMS. Jest zwykle ściągana jakaś rozsądna porcja, gdy kursor

zbliża się do pozycji od której te rekordy mogą być potrzebne.

Dlatego drugi sposób (dostępny tylko dla przewijalnych tabel wynikowych) jest

bardziej efektywny od pierwszego

Oczywiście, ResultSet przeglądamy zwykle po to by pobierać wartości pól

poszczególnych rekordów i wykonywać na nich jakieś operacje (choćby

raportowania).

7.11. Odpowiedniość typów danych SQL i Javy. Pobieranie

wartości pól

Typy danych zapisane w BD różnią się od typów danych Javy.

Aby sprawnie działać na wartościach pól poszczególnych rekordów trzeba

wiedzieć w jaki sposób typy SQL są odzwierciedlane w typy Javy.

Standardowy typ SQL Podstawowy typ Javy Obiektowy typ Javy

CHAR String String

VARCHAR String String

LONGVARCHAR String String

NUMERIC java.math.BigDecimal j ava.math.BigDecimal

DECIMAL java.math.BigDecimal java.math.BigDecimal

BIT boolean Boolean

TINYINT byte Integer

SMALLINT short Integer

INTEGER int Integer

BIGINT long Long

REAL float Float

FLOAT doub le Double

DOUBLE double Double

BINARY byte[] byte[]

VARBINARY byte[] byte[]

LONGVARBINARY byte[] byte[]

DATE java.sql.Date java.sql.Date

TIME java.sql.Time java.sql.Time

TIMESTAMP java.sql.Timestamp java.sql.Timestamp

CLOB java.sql.Clob java.sql.Clob

BLOB java.sql.Blob java.sql.Blob

ARRAY java.sql.Array java.sql.Array

STRUCT java.sql.Struct java.sql.Struct

REF java.sql.Ref java.sql.Ref

Ta informacja jest ważna, jeśli chcemy tworzyć nieco bardziej elastyczne aplikacje

(np. uniwersalne edytory tabel bazodanowych).

 Do pobierania wartości kolumn tabeli wynikowej służą metody getTTT(...)

interfejsu ResultSet, które dokonują automatycznej konwersji pomiędzy SQL-

owym typem pola, a typem Javy TTT (TTT – oznacza tu jakiś typ np. int lub

String).

Najprostszy szablon:

Możliwości użycie metod getTTT(...) wobec określonych typów SQL wyjaśnia

następująca rysunek.

Przykład:

String sel = "select tytul, cena from pozycje where cena > 40";

 try {

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(sel);

 while (rs.next()) { // można też użyć:

 String tytul = rs.getString(3); // rs.getString("tytul");

 float cena = rs.getFloat(6); // rs.getFloat("cena");

 float usd = cena/4;

 System.out.println("Tytul: " + tytul);

 System.out.println("Cena : " + cena + " PLN");

 System.out.println("USD : " + usd + " USD");

 System.out.println("-----------------");

 }

 rs.close();

 stmt.close();

 con.close();

 } catch (SQLException exc) {

 System.out.println(exc.getMessage());

 }

Uwaga: należy zamykać ResultSet po wykorzystaniu (rs.close()), aby na pewno

zwolnić zasoby.

ResultSet jest zamykany automatycznie, gdy zamykamy Statement (stmt.close())

lub gdy ten sam obiekt typu Statment wykorzystywany jest ponownie do

wykonania innej instrukcji SQL (ew. powstaje wtedy nowy ResultSet).

7.12. Modyfikowalny ResultSet

Jeżeli sterownik JDBC dopuszcza modyfikowalny ResultSet (typ:

ResultSet.TYPE_CONCUR_UPDATABLE), to możemy użyć wobec obiektu typu

ResultSet metod updateTTT(...), updateRow(), insertRow() i deleteRow(...).

Pozwalają one na: dodawanie, modyfikowanie i usuwanie rekordów bez

bezpośredniego użycia instrukcji SQL, operując na obiekcie typu ResultSet.

Przed wywołaniem tych metod należy ustawić kursor, tak by wskazywał

odpowiedni rekord.

// Np. usuwanie rekordu 5

ResultSet rs;

...

rs.absolute(5);

rs.deleteRow();

Metoda updateRow() służy zarówno do wpisywania jak i modyfikowania

rekordów. Przy wpisywaniu ustawiamy kursor na specjalnym "rekordzie" –

nowym wierszu, za pomocą metody moveToInsertRow().

Ustalenie wartości pól (w nowym lub modyfikowanym) rekordzie odbywa się za

pomocą metod updateTTT(...) (gdzie TTT – javowy typ pola) z dwoma

argumentami: oznaczenie kolumny (indeks lub nazwa) i wpisywana wartość.

7.13. Metainformacje o tabeli wynikowej

Specjalny obiekt typu ResultSetMetaData dostarcza informacji o kolumnach

tabeli wynikowej. Obiekt ten uzyskujemy od obiektu ResultSet za pomocą metody

getMetaData():

 ResultSet rs ...

 ...

 ResultSetMetaData rsmd = rs.getMetaData();

a następnie używamy metod interfejsu ResultSetMetaData by otrzymać konkretne

informacje.

Przykład

(mamy otwarte połaczenie Connection con i używamy dodatkowej metody

 void say(String s) { System.out.print(s); })

 String sel ="SELECT AUTOR.ID, AUTOR.AUTOR, POZYCJE.TYTUL,"

 "WYDAWCA.NAME AS WYDAWCA " +

 "FROM POZYCJE,AUTOR, WYDAWCA " +

 "WHERE WYDAWCA.ID = POZYCJE.WYDID " +

 "AND AUTOR.ID = POZYCJE.AUTID " +

 "ORDER BY AUTOR ASC;";

 try {

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(sel);

 ResultSetMetaData rsmd = rs.getMetaData();

 int cc = rsmd.getColumnCount(); // liczba kolumn

 for (int i = 1; i <= cc; i++) { // i-ta kolumna:

 say('\n'+ rsmd.getColumnName(i)); // - nazwa

 say(" " + rsmd.getColumnDisplaySize(i)); // - szerokość

 say(" " + rsmd.getColumnClassName(i)); // - klasa Javy

 say(" " + rsmd.getColumnType(i)); // - typ SQL

 say(" " + rsmd.getColumnTypeName(i)); // - typ RDBMS

 }

 stmt.close();

 con.close();

 } catch (SQLException exc) {

 System.out.println(exc.getMessage());

 }

Uwaga:

typ SQL – stała int z java.sql.Types

klasa Javy – jakiej klasy obiekt zwróci getObject() użyty wobec tej kolumny

ResultSet

Możliwy wynik:

ID 11 java.lang.Integer 4 LONG

AUTOR 255 java.lang.String 12 TEXT

TYTUL 255 java.lang.String 12 TEXT

WYDAWCA 120 java.lang.String 12 TEXT

7.14. Instrukcje prekompilowane

Prekompilowane instrukcje SQL są przed wykonaniem wysyłane do RDBMS i

podlegają tam prekompilacji, swoistemu przygotowaniu, które następnie

przyspiesza ich wielokrotne użycie (wykonanie).

Oczywiście nie ma sensu wykonywać tej samej instrukcji wielokrotnie. Dlatego w

instrukcjach prekompilowanych używane są znaki ? jako symbole parametrów.

Przy każdym wykonaniu w miejsce znaków ? podstawia się odpowiednie wartości.

Instrukcje prekompilowane w Javie reprezentowane są jako obiekty typu

PreparedStatement.

Tworzymy instrukcję prekompilowaną za pomocą metody prepareStatement

(zamiast createStatement), podając jako argument odpowiednią instrukcję SQL (z

parametrami ?). Zwykle instrukcje takie wykonujemy w pętli ustalając wartości

parametrów za pomocą metod set... interfejsu PrepareStatement .

Jeśli TTT i XXX oznaczają (różny) typ Javy (np. int, String, float, etc) to

(przykładowe) wykonanie instrukcji prekompilowanej można przedstawić

schematycznie w następujący sposób:

Przykład:

Connection con;

PreparedStatement stmt;

...

 String[] wyd = { "PWN", "PWE", "Czytelnik", "Amber", "HELION",

 "MIKOM" };

 int beginKey = 10,

 try {

 stmt = con.prepareStatement("INSERT INTO WYDAWCA VALUES(?,?)");

 for (int i=0; i < wyd.length; i++) {

 stmt.setInt(1, beginKey + i);

 stmt.setString(2, wyd[i]);

 stmt.executeUpdate(); // Uwaga: inna forma

executeUpdate()

 }

 con.close();

 } catch(SQLException exc) {

 System.out.println(exc);

 }

7.15. Obsługa transakcji

Transakcja to grupa instrukcji, traktowanych jako całość: jeżeli któraś z nich nie

zostanie wykonana – nie mogą być wykonane inne; np. przelew z konta na konto)

Sterowniki JDBC zwykle używają domyślnie trybu autoCommit (wykonanie

każdej instrukcji INSERT, DELETE, UPDATE powoduje zmiany w bazie danych;

transakcją jest jedna instrukcja).

7.16. Zastosowanie architektury "Model-View-Controller"

przy tworzeniu graficznych interfejsów BD za pomocą

komponentów Swingu

Java wyjątkowo dobrze nadaje się do tworzenia graficznych interfejsów

użytkownika dostępu do baz danych. Szczególną rolę odgrywają tu komponenty

Swingu ze względu na ich elastyczność, atrakcyjność graficzną, niezależny od

platformy i konfigurowalny wygląd oraz realizację koncepcji MVC.

Szczególnie atrakcyjnym (w kontekście interakcji z bazą danych) komponentem

Swingu jest tabela (klasa JTable).

Zobaczymy teraz przykład realizacji modelu danych tabeli dla przedstawienia

tabeli wynikowej instrukcji SELECT (i nie tylko – praktycznie każdego

ResultSetu).

Komórki tabeli będą edytowalne, a ich edycja ma powodować zmiany w tabelach

BD.

// Model danych dla tabeli pokazującej dowolny ResultSet

import java.util.*;

import java.sql.*;

import javax.swing.*;

import javax.swing.table.*;

import javax.swing.event.*;

public class DbTable extends AbstractTableModel {

 private Connection con;

 private ResultSet rs;

 private String[] columnNames;

 private int[] columnTypes;

 private boolean[] readOnly;

 private String tableName = "";

 private List rows;

 private ResultSetMetaData md;

 private boolean editable = false;

public DbTable(Connection conn, String query, ResultSet resultSet, boolean

ed) {

 rs = resultSet;

 editable = ed;

 con = conn;

 tableName = getTableName(query);

 try {

 md = rs.getMetaData();

 int cc = md.getColumnCount();

 columnNames = new String[cc];

 columnTypes = new int[cc];

 readOnly = new boolean[cc];

 for(int col = 0; col < cc; col++) {

 columnNames[col] = md.getColumnName(col+1);

 columnTypes[col] = md.getColumnType(col+1);

 readOnly[col] = md.isReadOnly(col+1);

 }

 rows = new ArrayList();

 while (rs.next()) {

 List row = new ArrayList();

 for (int i = 1; i <= getColumnCount(); i++) {

 row.add(rs.getObject(i));

 }

 rows.add(row);

 }

 rs.close();

 fireTableChanged(null); // Nowa tabela

 } catch (SQLException ex) {

 System.out.println(ex.getMessage());

 }

}

// Niedoskonala wersja

private String getTableName(String q) {

 if (q == null || q.equals("")) return "";

 StringTokenizer st = new StringTokenizer(q);

 while (st.hasMoreTokens()) {

 String w = st.nextToken();

 w = w.toUpperCase();

 if (w.equals("FROM")) {

 String t = st.nextToken();

 if (t.indexOf(',') == -1) return t;

 break;

 }

 }

 return "";

}

// Obowiązkowe metody interfejsu TableModel

public String getColumnName(int column) {

 if (columnNames[column] != null) return columnNames[column];

 else return "";

}

public Class getColumnClass(int column) {

 String type;

 Class c = null;

 try {

 type = md.getColumnClassName(column+1);

 c = Class.forName(type);

 }

 catch (Exception e) {

 return super.getColumnClass(column);

 }

 return c;

}

public boolean isCellEditable(int row, int column) {

 if (!editable) return false;

 if (tableName.equals("")) return false;

 return !readOnly[column];

}

public int getColumnCount() {

 return columnNames.length;

}

public int getRowCount() {

 return rows.size();

}

public Object getValueAt(int r, int c) {

 List row = (List)rows.get(r);

 return row.get(c);

}

 public String dbValue(int col, Object value) {

 int type;

 if (value == null) return "null";

 type = columnTypes[col];

 switch(type) {

 case Types.CHAR:

 case Types.VARCHAR:

 case Types.LONGVARCHAR:

 return "\'"+value.toString()+"\'";

 case Types.BIT:

 return ((Boolean)value).booleanValue() ? "1" : "0";

 default:

 return value.toString();

 }

}

 public void setValueAt(Object value, int r, int c) {

 List row = (List) rows.get(r);

 String oldval = row.get(c).toString();

 if (oldval.equals(value.toString())) return;

 String colName = getColumnName(c);

 String query = " update " + tableName +

 " set " + colName + " = " + dbValue(c, value) +

 " where ";

 for(int j = 0; j < getColumnCount(); j++) {

 colName = getColumnName(j);

 if (colName.equals("")) continue;

 if (j != 0) query += " and ";

 query += colName +" = "+ dbValue(j, getValueAt(r, j));

 }

 query += ";";

 try {

 Statement s = con.createStatement();

 int updCount = s.executeUpdate(query);

 row.set(c, value);

 System.out.println("Zmieniono rekordów: " + updCount);

 } catch (SQLException e) {

 System.out.println(query);

 System.out.println(e.getMessage());

 }

 }

}

Stworzymy również prosty graficzny interfejs do wydawania zleceń SQL oraz

oglądania wyników w postaci tabeli.

Przykładowe okno tego programiku wygląda tak:

a jego kod pokazano poniżej:

// Testowy interfejs SQL

import java.sql.*;

import javax.swing.*;

import javax.swing.text.*;

import java.awt.event.*;

import java.awt.*;

import java.util.*;

public class TestSQL extends JFrame implements ActionListener {

 private Connection con = null;

 private Statement stmt;

 private ResultSet rs = null;

 private String query;

 private JTable table = new JTable();

 private JTextArea ta = new JTextArea(3,40);

 private DefaultListModel history = new DefaultListModel();

 private JList hlis = new JList(history);

 private JWindow wh = new JWindow();

 public TestSQL(String URL, String driver, String user,

 String passwd) {

 super("Baza danych książki");

 setDefaultCloseOperation(3);

 try {

 Class.forName(driver);

 con = DriverManager.getConnection(URL);

 stmt = con.createStatement();

 } catch (Exception exc) {

 System.out.println(exc.getMessage());

 System.exit(1);

 }

 JScrollPane scrollpane = new JScrollPane(table);

 scrollpane.setPreferredSize(new Dimension(600, 400));

 JPanel p = new JPanel();

 p.setLayout(new BorderLayout());

 ta.setLineWrap(true);

 JScrollPane tsp = new JScrollPane(ta);

 p.add(tsp, "Center");

 JButton b = new JButton("Execute");

 b.setMnemonic('E');

 b.addActionListener(this);

 p.add(b, "East");

 p.setBorder(BorderFactory.createLineBorder(Color.blue));

 getContentPane().add(scrollpane, "Center");

 getContentPane().add(p, "South");

 createHistoryList();

 pack();

 setVisible(true);

 }

 public void actionPerformed(ActionEvent e) {

 String new_query = ta.getText();

 if (new_query.equals(query)) return;

 query = new_query;

 if (!history.contains(query)) history.addElement(query);

 execute(query);

 }

 void execute(String query) {

 try {

 rs = stmt.executeQuery(query);

 DbTable dbt = new DbTable(con, query, rs, true);

 table.setModel(dbt);

 } catch(SQLException exc) {

 System.out.println(exc.getMessage());

 }

 }

 void createHistoryList() {

 ta.addMouseListener(new MouseAdapter() {

 public void mouseReleased(MouseEvent e) {

 if (e.isPopupTrigger()) {

 wh.pack();

 wh.show();

 }

 }

 });

 hlis.addMouseListener(new MouseAdapter() {

 public void mouseClicked(MouseEvent e) {

 if (e.getClickCount() == 2) {

 String s = (String) hlis.getSelectedValue();

 if (s != null) ta.setText(s);

 wh.setVisible(false);

 }

 }

 });

 JScrollPane hsp = new JScrollPane(hlis);

 hsp.setPreferredSize(new Dimension(200, 300));

 JPanel hp = new JPanel(new BorderLayout());

 hp.setBorder(BorderFactory.createLoweredBevelBorder());

 hp.add(hsp, "Center");

 JPanel bhp = new JPanel();

 ActionListener hlHandler = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 String cmd = e.getActionCommand();

 if (cmd.equals("Cancel")) wh.setVisible(false);

 else if (cmd.equals("Clear all")) history.clear();

 else {

 int index = hlis.getSelectedIndex();

 if (index == -1) return;

 if (cmd.equals("Clear")) history.remove(index);

 else if (cmd.equals("Execute")) {

 String new_query = (String) hlis.getSelectedValue();

 if (new_query.equals(query)) return;

 query = new_query;

 wh.setVisible(false);

 execute(query);

 ta.setText(query);

 }

 }

 }

 };

 JButton b = new JButton("Cancel");

 b.addActionListener(hlHandler);

 bhp.add(b);

 b = new JButton("Clear");

 b.addActionListener(hlHandler);

 bhp.add(b);

 b = new JButton("Clear all");

 b.addActionListener(hlHandler);

 bhp.add(b);

 b = new JButton("Execute");

 b.addActionListener(hlHandler);

 bhp.add(b);

 hp.add(bhp, "South");

 wh.getContentPane().add(hp);

 ta.addMouseListener(new MouseAdapter() {

 public void mouseReleased(MouseEvent e) {

 if (e.isPopupTrigger()) {

 wh.setLocation(getX()+10, getY()+50);

 wh.pack();

 wh.show();

 }

 }

 });

 }

 public static void main(String[] args) {

 String driverName = "com.mysql.jdbc.Driver";

 String url = "jdbc:mysql:///ksidb";

 String uid = "pies";

 String pwd = "kuba";

 new TestSQL(url, driverName, uid, pwd);

 }

}

7.17 Zadania i ćwiczenia

Ze względu na wagę problematyki programowania dostępu do baz

danych ćwiczenia będą dość obszerne, ale za to proste i stopniowo wprowadzające

w temat.

Używana w ćwiczeniach przykładowa baza danych książek zrealizowana jest w

MySQL.

Po instalacji MySQL i sterownika Connector/J (jego plik jar można umieścić w

katalogu jre/lib/ext) należy stworzyć bazę danych uruchamiając plik wsadowy o

następującej postaci:

create database if not exists ksidb;

use ksidb;

drop table if exists AUTOR, WYDAWCA, POZYCJE;

create table if not exists AUTOR (

 ID integer not null AUTO_INCREMENT,

 NAME varchar(255) not null,

 PRIMARY KEY(ID)

);

load data infile 'AUTOR.TXT' replace into table AUTOR;

create table if not exists WYDAWCA (

 ID integer not null AUTO_INCREMENT,

 NAME varchar(255) not null,

 PRIMARY KEY(ID)

);

load data infile 'WYDAWCA.TXT' replace into table WYDAWCA;

create table if not exists POZYCJE (

 ISBN char(13) not null,

 AUTID integer not null,

 TYTUL varchar(255) not null,

 WYDID integer not null,

 ROK int not null,

 CENA real,

 PRIMARY KEY(ISBN),

 FOREIGN KEY(AUTID) REFERENCES AUTOR(ID),

 FOREIGN KEY(WYDID) REFERENCES WYDAWCA(ID),

);

load data infile 'POZYCJE.TXT' replace into table POZYCJE;

Przykładowe pliki z danymi dołaczone są na CD.

CZĘŚĆ 1. DBLETY

Proponowane "deblety" są krótkimi programikami ćwiczeniowymi pokazującymi

podstawowe działania z bazami danych z poziomu Javy. Tutaj pokazane sa

częściowymi programy, które należy uzpełnić, tak by właściwie działały.

Zad. 1 (Łączenie z bazą danych i uzyskiwanie metainformacji o bazie danych)

Program pokazuje, że do połączenia z BD potrzebne są dwa kroki:

- załadowanie odpowiedniej klasy sterownika

- uzyskanie połączenie poprzez uzyskanie obiektu typu Connection

Od obiektu Connection możemy otrzymać metainformacje związane ze sterownikiem, systemem zarządzania BD i

samą BD poprzez uzyskanie obiektu typu DatabaseMetaData, który możemy odpytywać za pomocą wielu metod

interfejsu DatabaseMetaData.

Należy napisać program, łączący się z bazą danych książek i uzyskujący niektóre

informacje o bazie danych.

Częściowy gotowy program (bez części odpowiedzialnej za połączenie z bazą i

uzyskanie metainformacji jest pokazany poniżej. Nalezy go uzupełnić o brakujące

fragmenty kodu.

import java.sql.*;

import java.lang.reflect.*;

public class Con1 {

 // tu czegoś brakuje

 public Con1() {

 // ... i tu rownież

 }

// Metoda raportująca informacje zebrane w DatabaseMetaData

// w wywołaniach metody info podano jako argumenty nazwy metod tego

interfejsu

// a w metodzie info korszystamy z metod refleksji;

// ten sposób oprogramowania jest zaawansowany, ale wygodny, bo dużo mniej

pisania

// i kod jest bardziej klarowny

// klauzula throws SQLException mówi o tym, że w trakcie działania

reportInfo może powstać wyjątek

// SQLException, ale nie będziemy go tu obsługiwać, obsługę przekażemy do

miejsca wywołania

// czyli bloku try w konstruktorze

void reportInfo() throws SQLException {

 info("getDatabaseProductName");

 info("getDatabaseProductVersion");

 info("getDriverName");

 info("getURL");

 info("getUserName");

 info("supportsAlterTableWithAddColumn");

 info("supportsAlterTableWithDropColumn");

 info("supportsANSI92FullSQL");

 info("supportsBatchUpdates");

 info("supportsMixedCaseIdentifiers");

 info("supportsMultipleTransactions");

 info("supportsPositionedDelete");

 info("supportsPositionedUpdate");

 info("supportsSchemasInDataManipulation");

 info("supportsTransactions");

 System.out.println("ResultSet TYPE_SCROLL_INSENSITIVE :" +

 md.supportsResultSetType(ResultSet.TYPE_SCROLL_INSENSITIVE));

 System.out.println("ResultSet TYPE_SCROLL_SENSITIVE :" +

 md.supportsResultSetType(ResultSet.TYPE_SCROLL_SENSITIVE));

 System.out.println("insertsAreDetected :" +

 md.insertsAreDetected(ResultSet.TYPE_SCROLL_INSENSITIVE));

 System.out.println("updatesAreDetected :" +

 md.updatesAreDetected(ResultSet.TYPE_SCROLL_INSENSITIVE));

 }

// Metoda info korzysta z metod refleksji do wywołania metod podanych

"przez" nazwy.

 void info(String metName) {

 Class mdc = DatabaseMetaData.class;

 Class[] paramTypes = { };

 Object[] params = { };

 String infoTyp;

 if (metName.startsWith("get"))

 infoTyp = metName.substring(3,metName.length());

 else infoTyp = metName;

 try {

 Method m = mdc.getDeclaredMethod(metName, paramTypes);

 System.out.println(infoTyp + ": " + m.invoke(md, params)); //

dynamiczne wywołanie metody

 } catch(Exception exc) { // Możliwe powody wyjątków: nie ma takiej

metody, niewłaściwe wywołanie

 System.out.println(exc);

 }

 }

 public static void main(String[] args) {

 new Con1();

 }

Zadanie 2 (tworzenie tabeli)

Uwaga: Przed wykonaniem tego zadania należy zrobić kopię bazy.

Przykład pokazuje następujące ważne kwestie:

• polecenia DDL lub SQL są wykonywane za pośrednictwem obiektu typu Statement

• obiekt Statement uzyskujemy od obiektu Connection za pomocą zlecenia createStatement()

• wszelkie zmiany w bazie danych (w tym usuwanie i tworzenie tabel) wykonujemy za pomocą metody

executeUpdate aktywowanej na rzecz obiektu Statement

• "na tym samym" obiekcie Statement możemy wykonać dowolnie wiele poleceń SQL/DDL

• od obiektu typu SQLException (wyjątku SQL) możemy się dowiedzieć wielu rzeczy np. o standardowy

"SQL State" lub zależny od dostawcy RDBMS kod błędu.

Zadanie: utworzyć tabelę WYDAWCA z kolumnami:

ID (całkowitoliczbowy klucz pierwotny)

NAME (łańcuch znakowy zmiennej długości o maks. 255 znakach) – nazwa

wydawcy.

Napisać program w taki sposób, by zawsze (niezależnie od tego czy już w bazie

istnieje tabela WYDAWCA) była tworzona nowa tabela.

Uwaga: tabela WYDAWCA jest tabelą macierzystą dla tabeli POZYCJE (klucz

zewnętrzny tabeli POZYCJE odnosi się do klucza pierwotnego tabeli

WYDAWCA; relacja ta wymusza spójność referencyjnej).

import java.sql.*;

public class Cre1 {

 static public void main(String[] args) {

 new Cre1();

 }

Statement stmt;

Cre1() {

 Connection con = null;

 try {

 // łączenie z bazą i utworzenie obiektu typu Statement

 } catch (Exception exc) {

 System.out.println(exc);

 System.exit(1);

 }

 // metoda dropTable jest naszą własną metodą napisaną dla skrócenia

programu

 // usuwa ona tabelę podaną jako argument

 // Aby w każdych okolicznościach stworzyć nową tabelę WYDAWCA

 // musimy usunąć ew. już istniejącą tabelę WYDAWCA

 dropTable("POZYCJE"); // usunięcie tabeli pochodnej, będącej w relacji z

tabelą WYDAWCA

 dropTable("WYDAWCA"); // usinięcie tabeli WYDAWCA

 String crestmt = ...

 try {

 // wykonanie polecenia zapisanego w crestmt

 } catch (SQLException exc) { // przechwycenie

wyjątku:

 System.out.println("SQL except.: " + exc.getMessage());

 System.out.println("SQL state : " + exc.getSQLState());

 System.out.println("Vendor errc: " + exc.getErrorCode());

 System.exit(1);

 } finally {

 try {

 stmt.close();

 con.close();

 } catch(SQLException exc) {

 System.out.println(exc);

 System.exit(1);

 }

 }

}

private void dropTable(String tname) {

 //

}

Ćwiczenie dodatkowe:

1. przywrócić bazę danych do postaci wyjściowej

2. skompilować i wykonać program bez odwołania dropTable("POZYCJE")

3. obejrzeć dokładnie komunikaty o wyjątkach

Zad. 3 (wpisywanie rekordów do tabeli)

Dodać do tabeli WYDAWCA trzy rekordy reprezentujące jakichś wydawców.

Przykład ilustruje następujące kwestie:

• instrukcja SQL do wpisywania ma postać INSERT... (w kilka różnych

formach)

• przy wpisywaniu rekordów używamy executeUpdate(...)

• przy wpisywaniu i modyfikowaniu metoda ta zwraca liczbę

wpisanych/zmodyfikowanych rekordów,

• dane typu znakowego (CHAR, VARCHAR, LONGVARCHAR) są

podawane w SQL w apostrofach

import java.sql.*;

public class Ins1 {

 static public void main(String[] args) {

 new Ins1();

 }

Statement stmt;

Ins1() {

 Connection con = null;

 try {

 //...

 } catch (Exception exc) {

 System.out.println(exc);

 System.exit(1);

 }

 String[] ins = { "INSERT INTO WYDAWCA VALUES (1, \'Wyd 1\')",

 "INSERT INTO WYDAWCA VALUES (2, \'Wyd 2\')",

 "INSERT INTO WYDAWCA VALUES (3, \'Wyd 3\')",

 };

 int insCount = 0; // ile rekordów wpisano

 try {

 for (int i=0; i < ins.length; i++) // wpisywanie rekordów

 // ...

 }

//...

}

}

Dodatkowe ćwiczenie:

wykonać program ponownie i

zobaczyć jak naruszone jest ograniczenie jednoznaczności klucza pierwotnego

Modyfikacja: użyć prekompilowanych instrukcji.

Ta modyfikacja ilustruje użycie instrukcji prekompilowanych:

• ins. prekompilowana przygotowywana i wykonywana jest za pomocą

obiektu typu PreparedStatement

• obiekt ten jest tworzony poprzez (inne!) odwołanie do obiektu Connection:

prepareStatement(...)

• argumentem prepareStatement jest String, w którym występują znaki

zapytania – miejsca na "parametry" podstawiane przy kolejnych

wykonaniach polecenia prekompilowanego

• metody set... interfejsu PreparedStatement pozwalają podstawiać za

parametry-znaki zapytania kolejne wartości

• trzeba wiedzieć jaki jest typ wartości (pola) i użyć odpowiedniej metody

set...

 // ...

 String[] wyd ={ "PWN", "PWE", "Czytelnik", "Amber", "HELION", "MIKOM" };

 int beginKey = 10,

 insCount = 0;

 try {

 // przygotowanie instrukcji prekompilowanej

 stmt = con.prepareStatement("INSERT INTO WYDAWCA VALUES(?,?)");

 for (int i=0; i < wyd.length; i++) {

 // ... ?

 }

 con.close();

 } catch(SQLException exc) {

 System.out.println(exc);

 }

 // ...

Zadanie 4 (SELECT i ResultSet)

Uwaga: aby wykonać to zadanie należy przywrócić wyjściową wersję bazy

Wyprowadzić z tabeli POZYCJE wszystkie rekordy, spełniające warunek CENA >

30 zł i pokazać dla każdego z nich tytuł i cenę w PLN i (obliczoną) cenę w USD.

Program ma ilustrować następujące kwestie:

• instrukcja SELECT wykonywana jest za pomocą executeQuery(..)

• executeQuery zwraca obiekt typy ResultSet (tzw. tabela wynikowa)

• z ResultSet związany jest tzw. kursor, który wskazuje bieżący rekord w

tabeli wynikowej

• inicjalnie kursor ustawiony jest przed pierwszym rekordem tabeli wynikowej

• kursor możemy przesuwać (tylko w stronę końca tabeli, o ile nie

wymagaliśmy tego, by ResultSet mógł być "skrolowany") za pomocą

metody next() interfejsu ResultSet

• wartości poszczególnych kolumn z bieżącego rekordu możemy pobrać za

pomocą metod get...

 String sel = "SELECT AUTOR, TYTUL, CENA FROM POZYCJE WHERE CENA > 40";

 try {

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(sel);

 while (rs.next()) {

 String tytul = // ... ?

 float cena = // ... ?

 float usd = cena/4;

 System.out.println("Tytul: " + tytul);

 System.out.println("Cena : " + cena + " PLN");

 System.out.println("USD : " + usd + " USD");

 System.out.println("-----------------");

 }

 stmt.close();

 con.close();

 } catch (SQLException exc) {

 System.out.println(exc.getMessage());

 }

Dodatkowe zadanie: wyprowadzić wszystkie rekordy tabeli wynikowej powstałej

na skutek wykonania instrukcji SELECT od końca tabeli; a następnie wyprowadzić

rekordy 3, 7 i 9.

To zadanie winno zilustrować:

• przewijalny ResultSet (typ deklarujemy w createStatement)

• absolutne pozycjonowanie w ramach tabeli wynikowej

• użycie metainformacji o kolumnach tabeli wynikowej (obiekt typu

ResultSetMetaData możemy uzyskać za pomocą zlecenia wobec ResultSet –

getMetaData(), następnie możemy go "odpytać" o różne informacje za

pomocą metod interfejsu ResultSetMetaData)

• uniwersalność metody getString: jeśli potrzebna nam tylko znakowa

reprezentacja informacji zawartej w kolumnach tabeli, getString (użyte

wobec bieżącego rekordu ResultSet) dokona właściwej konwersji dla

każdego typu danych w BD (oprócz typów definiowanych i SQL3

 String sel = // ... ?

 try {

 Statement stmt =

con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_READ_ONLY);

 ResultSet rs = stmt.executeQuery(sel);

 ResultSetMetaData rsmd = rs.getMetaData();

 int cc = rsmd.getColumnCount();

 for (int i = 1; i <= cc; i++)

 System.out.print(rsmd.getColumnLabel(i) + " ");

 System.out.println("\n------------------------ przewijanie do góry");

 // ... ?

 System.out.println("\n------------------------ pozycjonowanie abs.");

 int[] poz = { 3, 7, 9 };

 for (int p = 0; p < poz.length; p++) {

 System.out.print("[" + poz[p] + "] ");

 // ... ?

 for (int i = 1; i <= cc; i++)

 System.out.print(rs.getString(i) + ", ");

 System.out.println("");

 }

 stmt.close();

 con.close();

 } catch (SQLException exc) {

 System.out.println(exc.getMessage());

 }

CZĘŚĆ 2. Java jako język tworzenia interfejsów bazodanowych

Druga część ćwiczeń polega na przedstawieniu Javy jako wygodnego języka do

tworzenia graficznych interfejsów użytkownika dostępu do baz danych.

Prezentowany wczesniej (w p. 16) program korzysta z uniwersalnego modelu

danych tabeli Swing, odzwierciedlającego tabelę wynikową zapytania SQL lub

jakikolwiek inny ResultSet.

Program składa się z dwóch plików źródłowych, definiujących dwie klasy o tych

samych nazwach co pliki:

• DbTable.java – odzwierciedla dowolny ResultSet w modelu danych tabeli

Swingowej (JTable),

• TestSQL.java – jest graficznym interfejsem, umożliwiającym uzyskiwanie

wyników zapytań SELECT w postaci tabeli JTable, dla której modelem jest

klasa DbTable.

Skompilować obie klasy i uruchomić program.

Po uruchomieniu TestSQL jako głównej klasy uzyskujemy możliwość wpisywania

poleceń SQL w wielowierszowym polu edycyjnym u dołu okna. Kliknięcie w

przycisk Execute lub naciśnięcie alt-e (mnemonika) powoduje wykonanie

instrukcji SELECT (nie tylko!) i przedstawienie jej wyników w tabeli w centrum

okna. Tabela pozwala na bezpośrednie edytowanie pól w bazie danych (dbl-click

na polu tabeli) – jeśli jest to możliwe na podstawie danego ResultSet.

Wydane polecenia SQL gromadzone są w postaci "listy historii"/

Możemy do niej sięgać poprzez prawy klik na polu edycyjnym.

Podwójne kliknięcie na elemencie historii (zapamiętanym poleceniu) powoduje

jego przepisanie do pola edycyjnego.

U dołu okna listy historii znajdują się przyciski o następującym znaczeniu:

"Cancel" - zamknij listę

"Clear" – usuń zaznaczony element

"Clear all" – usuń wszystki elementy historii

"Execute" – wykonaj zaznaczoną na liście historii instrukcję SQL

Komentarze:

1. Model danych tabeli (plik DbTable.java) jest dość uniwersalny – pozwala

przedstawić dowolny ResultSet w postaci tabeli Swingowej

2. Konkretne GUI (TestSQL) może być dowolnie zmieniane bez ingerencji w

związki DB – Swing table model

3. Realizacja tego GUI zajęła mało czasu: okazuje się, że program w Javie o

zaawansowanych możliwościach może liczyć mniej niż 200 wierszy (tzn.

niezwykle krótki). Nb. większość kodu tego programu zajmuje się obsługą

listy historii.

Stworzyć bardziej interesujące GUI. Zastanowić się w jaki sposób można by było

uzyskiwac w klasie DBTable dostęp do ResultSet i prezentację go w modlu bez

przepisywania rekordów do wewnętrznych struktur danych,

