

4. XML i Java

XML jest obecnie standardową reprezentacją danych zapewniającą ich przenośność.

Jednakże za tym hasłem kryje się tak dużo zagadnień że nie sposób ich omówić w jednym czy

dwóch wykładach. Zatem w wykładzie tym uwaga skupiona zostanie na obecnie dostępnych

narzędziach Javy - interfejsach API do przetwarzania i przekształcania dokumentów w

standardzie XML. Interfejsy te zostaną najpierw omówione szczegółowo po to żeby zrozumieć

późniejsze przykładowe programy je wykorzystujące. Wymaga to od czytelnika dużej

samodzielności w analizie tych programów.

 4.1.Wprowadzenie

Co to jest XML (Extensible Markup Language) ?

Jak sama nazwa wskazuje jest to rozszerzalny język znaczników.

Nie wprowadzono w nim ani zestawu obowiązujących znaczników ani też nie

zdefiniowano poprawnego użycia znaczników (gramatyki języka).

Jest zatem rozszerzalny i ma w zasadzie nieograniczone możliwości

rozbudowywania.

Nie znaczy to jednak że nie ma w nim żadnych reguł .

Aktualny standard tego języka XML 1.0(specyfikacja organizacji W3C-World

Wide Web Consortium) wprowadza podstawowe koncepcje dotyczące struktury

takich dokumentów:

 1. dokument XML musi być poprawnie uformowany (skonstruowany)

 a) każdemu znacznikowi otwierającemu musi odpowiadać znacznik zamykający

 b) znaczniki mogą być zagnieżdżane ale tylko wewnętrznie (jeden znacznik

 całkowicie wewnątrz drugiego)

 c) musi istnieć znacznik główny obejmujący swoim zasięgiem wszystkie inne

 znaczniki

 2. dokumentowi XML można narzucić poprawność (zawęzić) zgodnie z definicją DTD

 (dokument XML może być poprawny)

Inny sposób zawężania dokumentów XML opisuje schemat XML Schema, ale

należy pamiętać że w przeciwieństwie do DTD nie jest on częścią

specyfikacji XML 1.0 . Zawężanie dokumentów XML umożliwia zrozumienie

sposobu reprezentacji danych innym osobom jak również innym aplikacjom.

 Uwaga : W świetle tych koncepcji dokument poprawnie

uformowany nie musi być poprawny.

Do czego może służyć tak określony dokument XML ?

Dokument XML zapewnia przenośny opis danych i ich struktury, zatem

jest ukierunkowany na opis danych a nie jak np. HTML na prezentację danych.

Dokument taki po utworzeniu i przesłaniu go lokalnie lub globalnie przez sieć

może zostać poddany analizie (parsowaniu) w celu wydzielenia ze znaczników

określonych atrybutów i danych. Atrybuty i dane po takim przetworzeniu są

zazwyczaj umieszczane w pewnych strukturach danych, które z kolei mogą być

przetwarzane przez inną aplikację. Parsowanie dokumentu XML jest

zadaniem złożonym i z reguły do tego celu używa się profesjonalnych parserów.

Główne kryteria wyboru parsera to zgodność ze specyfikacją XML i szybkość

analizy.

Do najpopularniejszych parserów należą:

 Apache Xerces (http://xml.apache.org)

 IBM XML4J (http://alphaworks.ibm.com/tech/xml4j)

 OpenXML (http://www.openxml.org)

 Oracle XML Parser (http://technet.oracle.com/tech/xml)

 Sun Microsystems Project X (http://java.sun.com/products/xml)

Mimo że dokument XML opisuje dane może jednak być przekształcony do

formatu umożliwiającego prezentację danych dla różnych użytkowników za

pomocą arkusza stylów XSL (Extensible StyleSheet Language) i

transformacji XSLT (Extensible StyleSheet Language Transformation).

http://xml.apache.org/
http://alphaworks.ibm.com/tech/xml4j
http://www.openxml.org/
http://technet.oracle.com/tech/xml
http://java.sun.com/products/xml

Transformacje wykonują specjalne programy zwane procesorami XSLT. Do

najbardziej znanych należą:

 Apache Xalan (http://xml.apache.org)

 Lotus XSL Processor (http://www.alphaworks.ibm.com/tech/LotusXSL)

 Oracle XSL Processor (http://technet.oracle.com/tech/xml)

I w tym przypadku głównymi kryteriami wyboru jest zgodność ze

specyfikacjami XSL,XSLT i szybkość działania.

Poniższy diagram pokazuje schemat przetwarzania (parsowania) i przekształcania

(zmiany formatu) dokumentu XML.

Dokument XML można utworzyć w dowolnym edytorze tekstowym (np. Notepad)

.Utworzony dokument może być następnie poddany przetworzeniu (parsing) w

celu odzyskania atrybutów lub danych ze struktury znaczników.

Można rozróżnić trzy rodzaje przetwarzania:

 1. przetwarzanie bez sprawdzania poprawności

 2. przetwarzanie ze sprawdzaniem poprawności wg DTD

 3. przetwarzanie ze sprawdzaniem poprawności wg XML Schema

W przypadku 2 i 3.. należy najpierw opisać w dokumencie typu DTD (Document

Type Definition) lub XML Schema sposób zawężania dokumentu XML.

DTD defniuje sposób w jaki ma być skonstruowany dokument XML

wprowadzając pewne ograniczenia na format znaczników i ich składnię.

To właśnie uzgodnienie formatu i składni zapewnia dokumentowi XML

przenośność między aplikacjami.

Standard DTD ma jednak poważne ograniczenia: własne konstrukcje nie związane

z XML, brak znajomości hierarchii, trudności w obsłudze przestrzeni nazw,

niemożność określania relacji między dokumentami XML.

Schemat XML Schema jest alternatywą dla DTD o znacznie bogatszych

możliwościach.

Istotne jest przede wszystkim że definiowanie XML odbywa się przy

pomocy konstrukcji XML, co zapewnia spójność opisu dokumentów XML.

Należy jednakże pamiętać że nie wszystkie parsery obsługują sprawdzanie

poprawności w/g XML Schema.

Po zdecydowaniu się na sposób zawężenia dokumentu XML mamy następnie do

wyboru 3 modele przetwarzania dokumentu XML reprezentowane przez

odpowiednie interfejsy (zestawy funkcji):

• model SAX

• model DOM

• model JDOM (alternatywa dla SAX lub DOM)

Wśród zestawów bibliotek można wyodrębnić zestaw JAXP (Java API for XML

Processing) pozwalający na dokonywanie analizy w modelu SAX lub DOM

niezależnie od konkretnego producenta parsera. Zestawienie pakietów dla

poszczególnych modeli przedstawia tabela:

Model SAX
Model DO

M
 Model JDOM JAXP XSLT

org.xml.sax

org.xml.sax.help

ers

org.xml.sax.ext

 org.w3c.do

m

org.jdom

org.jdom.adapter

s

org.jdom.input

javax.xml.parse

rs

javax.xml.transform

javax.xml.transform.sax

javax.xml.transform.dom

org.jdom.output

org.jdom.filter

org.jdom.transfor

m

javax.xml.transform.stre

am

Pakiety SAX, DOM, JAXP, XSLT są wbudowane w J2SE i dostarczane razem z

JDK1.4.1. Pakiety JDOM są osobnym zestawem API i trzeba je załadować z sieci

niezależnie od JDK1.4.1. Zrozumienie API Javy zawartego w tych pakietach

wymaga znajomości składni i struktury dokumentu XML - krótki opis języka

znajdziemy w rozdziale następnym.

Przenośność danych XML pełni ważną rolę w komunikacji:

 aplikacja <-------> aplikacja

 system <-------> system

 firma <-------> firma

Komunikacja taka powinna zakładać w ogólności istnienie klientów wymagających

prezentacji danych jak również takich którzy nie wymagają takiej prezentacji. Tak

więc ogólnie w czasie swojego życia dokument XML może podlegać cyklowi

przemian danych i ich formatu.

Przykładowy cykl takich transformacji pokazuje diagram poniżej.

Warto też pamiętać że XML to dane tekstowe, które nie wymagają dużych

zasobów systemowych, Łatwo też podlegają serializacji, zatem przesyłanie ich w

sieci jest nie stanowi problemu i jest szybkie.

Połączenie XML i Javy – przenośnych danych i przenośnego

kodu pozwala widzieć w tym połączeniu technologię przyszłości, niezależnie od

aktualnego stanu rozwoju tego standardu i narzędzi do jego obsługi. Jeżeli dodamy

do tego fakt, że API Javy umożliwia dynamiczne tworzenie dokumentów XML,

odczytywanie, modyfikacje danych oraz przechowywanie danych (informacji)

w standardowym formacie to już ta krótka charakterystyka XML zachęca do jego

poznania tego języka i związanych z nim technologii.

4.2. Składnia języka XML i struktura dokumentu XML

Omówimy teraz krótko składnie i strukturę dokumentu XML a potem

zaprezentujemy kilka przykładów takich dokumentów.

 A - składnia XML:

 instrukcje przetwarzania (PI)

 nakazują aplikacji przetwarzającej wykonanie określonego zadania

 Ich ogólna postać to :

 <? cel instrukcja ?>

 gdzie :

 cel - nazwa aplikacji która ma przetwarzać dane XML

 instrukcja - łańcuch znaków zawierający informację lub komendy dla aplikacji

 deklaracje typu dokumentu - określenie dokumentu DTD

<!DOCTYPE JavaXp:Book SYSTEM ”C:\JavaXP.dtd”>

<!DOCTYPE Java:Book PUBLIC " Nazwa

publiczna" ”http://www.w3.org./DTD/contents.dtd”>

 Java:Xp jest elementem głównym dokumentu

Po słowie SYSTEM lub PUBLIC powinien znajdować się poprawny identyfikator

URI(np. URL)

PUBLIC oznacza że definicja DTD do której następuje odwołanie ma zasięg

publiczny i mogą z niej korzystać wszyscy.

W tym przypadku przed podaniem URI konieczne jest podanie nazwy publicznej.

 encje

Reprezentują nietypowe znaki w danych. Po napotkaniu encji parser XML

podstawia pod nią określoną wartość i nie przetwarza jej dalej.

Ogólna postać encji wygląda następująco : &[nazwa-encji];

W XML zdefiniowano 5 encji :

 < otwierający nawias kątowy lub ‘mniejsze niż’ (<)

 > zamykający nawias kątowy lub ‘większe niż’ (>)

 & znak ampersand

 " cudzysłów

 ' apostrof

Encje mogą być również definiowane przez użytkownika, który w ten sposób

może odwoływać się do zewnętrznego dokumentu lub innego zasobu.

Przykład takiej encji zobaczymy w jednym z prezentowanych dokumentów XML.

 elementy, atrybuty elementów , dane elementów, przestrzenie

nazw

Element określony jest przez układ znaczników : otwierający i zamykający.

W znaczniku otwierającym zawarta jest nazwa elementu oraz mogą być

zawarte pary (atrybut, wartość).

Między znacznikami mogą występować dane elementu.

Nazwa elementu musi rozpoczynać się literą lub podkreśleniem, po którym może

wystąpić dowolna liczba liter, cyfr, podkreśleń, łączników lub kropek.

Nazwy nie mogą zawierać spacji. Wielkość liter jest rozróżnialna w nazwach.

Fragment prostego dokumentu XML z elementami zawierającymi dane i atrybuty

 <wiadomość >

 <do>Jan Kowalski</do>

 <od>Andrzej Talarek</od>

 <temat> Kolokwium z Javy</temat>

 <tekst zadanie1=”2” zadanie2=”2”> poszło mi fatalnie </tekst>

 </wiadomość>

Powstaje naturalne pytanie kiedy używać atrybutów i ich wartości

a kiedy danych. Nie istnieje niestety żadna specyfikacja ani standard mówiący o

tym ale utarło się w praktyce, że atrybutów i ich wartości używa się do opisu

informacji systemowych, danych elementu używa się do opisu informacji

przeznaczonych do prezentacji.

Specjalnym elementem jest element pusty (nie zawierający danych)

 <image src=”RedBall.gif”/>

Wprowadzony został dla uproszczenia takiego zapisu elementu:

 <image src=”RedBall.gif”></image>

Każdy element może posiadać nazwę kwalifikowaną

przedrostkiem, reprezentującym określoną przestrzeń nazw oraz umożliwiającym

jednoznaczną identyfikację elementu i w ten sposób wyeliminowanie kolizji nazw

elementów. Przedrostkowi powinno się przypisać niepowtarzalny identyfikator

URI (np. URL).

Element poniższy ma nazwę Book która pochodzi z przestrzeni

nazw JavaXP. Przestrzeń nazw JavaXP skojarzona jest z adresem URL.

 <JavaXP:Book xmlns:JavaXP=”http://www.jb.com/catalog/javaxml/”>

Specyfikacja przestrzeni nazw wymaga, żeby każdy element XML należał do

jakiejś przestrzeni nazw.

Jeżeli zatem nie deklarujemy jawnie przestrzeni nazw za pomocą przedrostka, to

dany element należy do przestrzeni domyślnej.

W tym przykładzie element Book należy do domyślnej przestrzeni nazw

skojarzonej z adresem URL

<Book xmlns=”http://www.jb.com/catalog/javaxml/”>

 komentarze

Komentarz w XML ma postać :

<!-- oto jest komentarz -->

 sekcja CDATA

Reprezentuje dane nie przetwarzane przez parser XML Stosowana jest wtedy gdy

aplikacji wywołującej trzeba przekazać dużą ilość danych nieprzetworzonych

przez parser XML.

W dokumencie XML sekcja CDATA wygląda tak:

 <nieprzetwarzane-dane>

 <![CDATA[Diagram:

 <krok-1>zainstaluj JVM

 <krok-2>znajdz odpowiedni plik properties

 <krok-3> pobierz program Program.class z adresu

”ftp://ftp.pjwstk.edu.pl”

]]>

 </nieprzetwarzane-dane>

B - Struktura dokument XML

Dokument XML składa się z dwóch zasadniczych części : prologu i zawartości.

 I - PROLOG

Prolog jest pierwszą częścią dokumentu XML

► deklaracja identyfikująca

Prolog powinien zawierać przynajmniej jedną deklarację która identyfikuje dany

dokument jako dokument XML.

 <?xml version=”1.0”?>

Znacznik ten może zawierać generalnie 3 atrybuty:

 version – wersja XML

 encoding -system kodowania

 standalone - czy jest samodzielnym dokumentem XML

 <?xml version=”1.0” encoding=”ISO-8859-2” standalone=”no”?>

► inne instrukcje przetwarzania

► deklaracje typu dokumentu(DTD lub XML Schema)

 II - ZAWARTOŚĆ DOKUMENTU

► element główny

► elementy zagnieżdżone

► encje

► dane nie przetwarzane

Prześledzimy teraz kilka dokumentów XML od najprostszych aż do bardziej

złożonych. Należy zaobserwować w nich strukturę i składnię dokumentu XML.

Przykład bardzo prostego dokumentu XML opisującego towar o numerze

identyfikacyjnym, nazwie, cenie i ilości :

Dokument item.xml

<!-- PROLOG DOKUMENTU -->

<!-- deklaracja identyfikująca -->

<?xml version="1.0"?>

<!-- ZAWARTOŚĆ DOKUMENTU -->

<!-- element główny: znacznik otwierający -->

<ITEM>

<!-- element zagnieżdżony z danymi -->

<ID>33445</ID>

<!-- element zagnieżdżony z danymi -->

<DESCRIPTION>JavaBook</DESCRIPTION>

<!-- element zagnieżdżony z danymi -->

<PRICE>19.95</PRICE>

<!-- element zagnieżdżony z danymi -->

<QUANTITY>56</QUANTITY>

<!-- element główny: znacznik zamykający -->

</ITEM>

Następny dokument to dokument opisujący pozycje figur dla danej konfiguracji

szachownicy.

 Tabela położeń

figur na

szachownicy:

White king (biały król) G1

White bishop (biały goniec) D6

White rook (biała wieża) E1

White pawn (biały pionek) A4

White pawn (biały pionek) B3

White pawn (biały pionek) C2

White pawn (biały pionek) F2

White pawn (biały pionek) G2

White pawn (biały pionek) H5

Black king (czarny król) B6

Black queen(czarna królowa) A7

Black pawn (czarny pionek) A5

Black pawn(czarny pionek) D4

 źródło: http://www.java.sun.com

Dokument XML opisujący tę konfigurację:

Dokument chess.xml

<!-- PROLOG DOKUMENTU -->

<!-- deklaracja identyfikująca -->

<?xml version="1.0" encoding="UTF-8"?>

<!-- ZAWARTOŚĆ DOKUMENTU -->

<!-- element główny CHESSBOARD-->

<CHESSBOARD>

<WHITEPIECES>

 <!-- element zagnieżdżony KING -->

 <KING>

 <!-- element zagnieżdżony POSITION z atrybutami COLUMN i ROW-->

 <POSITION COLUMN="G" ROW="1"/>

 </KING>

 <BISHOP><POSITION COLUMN="D" ROW="6"/></BISHOP>

 <ROOK>< POSITION COLUMN="E" ROW="1"/></ROOK>

 <PAWN>< POSITION COLUMN="A" ROW="4"/></PAWN>

 <PAWN><POSITION COLUMN="B" ROW="3"/></PAWN>

 <PAWN><POSITION COLUMN="C" ROW="2"/></PAWN>

 <PAWN><POSITION COLUMN="F" ROW="2"/></PAWN>

 <PAWN><POSITION COLUMN="G" ROW="2"/></PAWN>

 <PAWN><POSITION COLUMN="H" ROW="5"/></PAWN>

</WHITEPIECES>

<BLACKPIECES>

 <KING><POSITION COLUMN="B" ROW="6"/></KING>

 <QUEEN><POSITION COLUMN="A" ROW="7"/></QUEEN>

 <PAWN><POSITION COLUMN="A" ROW="5"/></PAWN>

 <PAWN><POSITION COLUMN="D" ROW="4"/></PAWN>

</BLACKPIECES>

<!-- koniec elementu głównego CHESSBOARD -->

</CHESSBOARD>

źródło: http://www.java.sun.com

Następny dokument opisuje zawartość książki "Java and XML" (autor: Brett

McLaughlin)

Dokument contents.xml

<!-- PROLOG DOKUMENTU -->

<!-- deklaracja identyfikująca -->

<?xml version="1.0"?>

<!-- instrukcje odwołujące się do arkuszy stylów XSL -->

<?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>

<?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl" media="wap"?>

<!-- instrukcje przetwarzania dla aplikacji ‘cocoon’ -->

<?cocoon-process type="xslt"?>

<!-- deklaracja dokumentu DTD -->

 <!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">

<!-- ZAWARTOŚĆ DOKUMENTU -->

<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">

 <JavaXML:Title>Java and XML</JavaXML:Title>

 <JavaXML:Contents>

 <JavaXML:Chapter-1 focus="XML">

 <JavaXML:Heading>Introduction</JavaXML:Heading>

 <JavaXML:Topic subSections="7">What Is It?</JavaXML:Topic>

 <JavaXML:Topic subSections="3">How Do I Use It?</JavaXML:Topic>

 <JavaXML:Topic subSections="4">Why Should I Use It?</JavaXML:Topic>

 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>

 </JavaXML:Chapter-1>

 <JavaXML:Chapter-2 focus="XML">

 <JavaXML:Heading>Creating XML</JavaXML:Heading>

 <JavaXML:Topic subSections="0">An XML Document</JavaXML:Topic>

 <JavaXML:Topic subSections="2">The Header</JavaXML:Topic>

 <JavaXML:Topic subSections="6">The Content</JavaXML:Topic>

 <JavaXML:Topic subSections="1">What's Next?</JavaXML:Topic>

 </JavaXML:Chapter-2>

<JavaXML:Chapter-3 focus="Java">

 <JavaXML:Heading>Parsing XML</JavaXML:Heading>

 <JavaXML:Topic subSections="3">Getting Prepared</JavaXML:Topic>

 <JavaXML:Topic subSections="3">SAX Readers</JavaXML:Topic>

 <JavaXML:Topic subSections="9">Content Handlers</JavaXML:Topic>

 <JavaXML:Topic subSections="4">Error Handlers</JavaXML:Topic>

 <JavaXML:Topic subSections="0"> A Better Way to Load a Parser </JavaXML:Topic>

 <JavaXML:Topic subSections="4">"Gotcha!"</JavaXML:Topic>

 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>

 </JavaXML:Chapter-3>

 <JavaXML:SectionBreak/>

 <JavaXML:Chapter-4 focus="Java">

 <JavaXML:Heading>Web Publishing Frameworks</JavaXML:Heading>

 <JavaXML:Topic subSections="4">Selecting a Framework</JavaXML:Topic>

 <JavaXML:Topic subSections="4">Installation</JavaXML:Topic>

 <JavaXML:Topic subSections="3"> Using a Publishing Framework </JavaXML:Topic>

 <JavaXML:Topic subSections="2">XSP</JavaXML:Topic>

 <JavaXML:Topic subSections="3">Cocoon 2.0 and Beyond</JavaXML:Topic>

 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>

 </JavaXML:Chapter-4>

</JavaXML:Contents>

 <!-- element z własną encją użytkownika : opis przetworzenia tej encji w definicji

DTD-->

 <JavaXML:Copyright> &OReillyCopyright; </JavaXML:Copyright>

<!-- znacznik zamykający element główny JavaXML:Book-->

</JavaXML:Book>

źródło: http://www.oreilly.com/catalog/javaxml

4.3. Model SAX

Model SAX (Simple API for XML) jest rozwijany przez członków listy adresowej

XML-dev.

SAX dokonuje odczytywania dokumentu i rozbijania danych na odpowiednie

elementy za pomocą mechanizmu obsługi zdarzeń. Definiuje on zdarzenia procesu

przetwarzania dokument XML, które będą podlegały monitorowaniu i obsłudze.

Umożliwia dostęp do danych w dokumencie XML.

Warto też pamiętać że SAX definiuje tylko sposób przetwarzania XML natomiast

sam nie dokonuje przetwarzania dokumentów XML (nie jest parserem).

Odpowiednie dla modelu SAX pakiety Javy to : org.xml.sax, org.xml.sax.helpers

oraz org.xml.sax.ext. Omówimy teraz te pakiety żeby zapoznać się z

możliwościami analizy jakie one dają i żeby prześledzić ich działanie w

przykładzie programu podanym później.

Interfejsy i klasy pakietu org.xml.sax:

Typ Nazwa Opis

Interfejsy

Attributes reprezentuje listę atrybutów XML;

rozpoznaje przestrzenie nazw

ContentHandler operacje na zawartości dokumentu XML

DTDHandler Obsługa podstawowych zdarzeń w

dokumencie DTD

EntityResolver Rozpoznawanie encji

ErrorHandler Podstawowy interfejs do obsługi zdarzeń

SAX

Locator Lokalizacja źródeł zdarzeń SAX w

dokumencie

XMLFilter Filtr danych, rozszerza XMLReader

XMLReader Określenie sposobu przetwarzanie w/g

modelu SAX2.0.Implementowany przez

parsery różnych producentów

Klasy InputSource reprezentacja źródła danych XML do

przetwarzania: strumień bajtów, strumień

znaków, URI

Klasy

wyjątków

SAXException Zgłaszany przy wywołaniach zdarzeń SAX

SAXNotRecognizedException Zgłaszany przez parser gdy nie rozpoznano

nazwy właściwości

SAXNotSupportedException Zgłaszany przez parser gdy brak jest

obsługi danej własności lub cechy

SAXParserException Zgłaszany w czasie przetwarzania przez

parser

Interfejs Attributes definiuje funkcjonalność związaną z listą atrybutów.

Umożliwia dostęp do listy atrybutów na 3 różne sposoby:

- poprzez indeks atrybutu

- poprzez identyfikator przestrzeni nazw i nazwę lokalną atrybutu

- poprzez nazwę atrybutu kwalifikowaną przestrzenią nazw

Porządek atrybutów na liście jest nieokreślony i zmienia się od implementacji do

implementacji.

Funkcje interfejsu Attributes

 int getIndex (String qName)

dostarcza indeks atrybutu poprzez nazwę atrybutu kwalifikowaną

przedrostkiem przestrzeni nazw

int getIndex (String uri, String localName)

dostarcza indeks atrybutu poprzez identyfikator przestrzeni nazw i nazwę lokalną

atrybutu.

int getLength()

dostarcza liczbę atrybutów na liście.

String getLocalName(int index)

dostarcza lokalną nazwę atrybutu na podstawie indeksu.

String getQName(int index)

dostarcza kwalifikowaną nazwę atrybutu na podstawie indeksu.

 String getType (int index)

dostarcza typ atrybutu na podstawie indeksu.

String getType(String qName)

dostarcza typ atrybutu na podstawie nazwy kwalifikowanej atrybutu.

 String getType(String uri,String localName)

dostarcza typ atrybutu na podstawie identyfikatora przestrzeni nazw i nazwy

lokalnej.

String getURI(int index)

dostarcza identyfikator przestrzeni nazw atrybutu poprzez indeks.

String getValue(int index)

dostarcza wartość atrybutu poprze indeks.

String getValue(String qName)

dostarcza wartość atrybutu o podanej nazwie kwalifikowanej.

 String getValue (String uri,String localName)

dostarcza wartość atrybutu na podstawie identyfikatora przestrzeni nazw i nazwy

lokalnej.

Interfejs ContentHandler jest implementowany przez większość aplikacji SAX,w

których istotne są informacje o logicznej zawartości dokument XML. Dzięki

implementacji tego interfejsu i zarejestrowaniu implementacji za

pomocą setContentHandler() parser otrzymuje informacje o zdarzeniach

wywołanych przez poszczególne komponenty dokumentu XML. Kolejność

otrzymanych zdarzeń odzwierciedla kolejność występowania odpowiednich

komponentów.

Funkcje przedstawione w tabeli są funkcjami typu "callback" i są wywoływane po

napotkaniu w dokumencie XML odpowiednich konstrukcji.

Funkcje interfejsu ContentHandler

 voi

d
characters (char[] ch, int start, int length)

 udostępnia dane zawarte w elemencie w postaci tablicy znaków oraz indeks

początkowy i końcowy danych do odczytania; informuje również o białych

znakach

 voi

d
endDocument ()

 informacja o końcu przetwarzania dokumentu

 vo

id
endElement (String namespaceURI, String localName, String qName)

 koniec elementu; namespaceURI jest jest przestrzenią tego danego elementu;

localName- nazwa lokalna elementu; qName- nazwa globalna elementu

 voi

d
endPrefixMapping (String prefix)

koniec odwzorowania przedrostka przestrzeni nazw; prefix- znaleziony przedrostek

przestrzeni nazw

 vo

id
ignorableWhitespace (char[] ch, int start, int length)

informacja o białych znakach ignorowanych w dokumencie XML; ch - tablica

znaków zawartych w elemencie; start. length - indeksy danych w tablicy.

 vo

id
processingInstruction (String target, String data)

informacja o napotkanej instrukcji przetwarzania; target- obiekt docelowy PI ; data-

dane wysłane do PI

 vo

id
setDocumentLocator (Locator locator)

ustalenie obiektu lokalizatora podającego miejsce wystąpienia wywołania

wstecznego; locator - lokalizator miejsca wywołania

 vo

id
skippedEntity (String name)

 informacja o encji pominiętej przez parser; name - nazwa pominiętej encji

 vo

id
startDocument ()

informacja o początku dokumentu.

 vo

id
startElement(String namespaceURI, String localName, String qName,

Attributes atts)

początek elementu; namespaceURI - identyfikator przestrzeni nazw danego

elementu; localName - nazwa lokalna elementu; qName - nazwa globalna elementu

 vo

id
startPrefixMapping (String prefix, String uri)

początek odwzorowania przedrostka przestrzeni nazw; prefix- znaleziony

przedrostek przestrzeni nazw ; uri - identyfikator URI przestrzeni nazw

Interfejs ErrorHandler to podstawowy interfejs do obsługi błędów SAX.

Obiekt klasy implementującej musi być zarejestrowany przez parser za pomocą

funkcji setErrorHandler().

Funkcje przedstawione w tabeli są funkcjami typu "callback" i są wywoływane po

wystąpieniu w dokumencie XML określonych błędów.

Funkcje interfejsu ErrorHandler

 void error (SAXParseException exception)

 błąd niekrytyczny - naruszono regułę XML (zazwyczaj naruszenie składni);

przetwarzanie może być kontynuowane

 void fatalError (SAXParseException exception)

 błąd krytyczny - naruszona została zasada XML; dalsze przetwarzanie nie jest

możliwe lub niecelowe

 void warning (SAXParseException exception)

 ostrzeżenie -żadne reguły XML nie zostały naruszone ale występuje niepoprawny

fragment dokumentu

Interfejs DTDHandler deklaruje 2 funkcje do obsługi zdarzeń zwiazanych z

przetwarzaniem dokumentu DTD:

Funkcje interfejsu DTDHandler

 vo

id
notationDecl (String name, String publicId, String systemId)

informacja o wystąpieniu deklaracji NOTATION; name - nazwa encji; publicId -

identyfikator publiczny; systemId - dentyfikator systemowy

 vo

id
unparsedEntityDecl (String name, String publicId, String systemId

, String notationName)

informacja o wystąpieniu deklaracji nie przetwarzanej encji; name - nazwa encji;

publicId - identyfikator publiczny; systemId - identyfikator systemowy

Obie te metody są wykorzystywane rzadko, gdyż zdarzenia związane z czytaniem

definicji DTD są znacznie mniej ważne niż te związane z przetwarzaniem

dokumentu XML.

Interfejs EntityResolver służy do rozpoznawania i tłumaczenia zewnętrznych encji

w dokumencie XML.

Nie wszystkie aplikacje muszą implementować ten interfejs. Szczególnie

pożyteczny będzie w aplikacjach tworzących dokumenty XML z baz danych lub

innych specjalizowanych źródeł albo też w aplikacjach używających

identyfikatorów innych niż URL.

Funkcje interfejsu EntityResolver

 InputSource resolveEntity (String publicId, String systemId)

dostarcza źródło do którego odnosi się encja; publicId, systemId-

identyfikator publiczny i systemowy encji.

Obiekt InputSource może być również zastosowany jako argument

metody parse() klasy Parser .Parser SAX będzie używał tego obiektu do

określenia sposobu czytania dokumentu XML. Jeżeli dostępny jest on jako

strumień znaków lub bajtów parser będzie czytał z tych strumieni bezpośrednio.

Jeżeli strumienie te nie są dostępne parser będzie próbował otworzyć połączenie

z zasobem identyfikowanym przez identyfikator systemowy.

Konstruktory klasy InputSource podaje tabela.

Konstruktory klasy InputSource

InputSource()

 konstruktor bezargumentowy

InputSource(InputStream byteStream)

tworzy obiekt InputSource na bazie strumienia bajtów.

InputSource(Reader characterStream)

tworzy obiekt InputSource na bazie strumienia znaków.

InputSource(String systemId)

tworzy obiekt InputSource na podstawie identyfikatora systemowego.

W podanym przykładzie konstruktor InputSource po napotkaniu encji z

identyfikatorem systemowym "http://www.myhost.com/today" dostarcza aplikacji

źródła danych typu strumienia znakowego

 import org.xml.sax.EntityResolver;

 import org.xml.sax.InputSource;

 public class MyResolver implements EntityResolver {

 public InputSource resolveEntity (String publicId, String systemId) {

 if (systemId.equals("http://www.myhost.com/today")) {

 Reader reader = new FileReader("data.txt");

 //zwraca źródło danych typu strumienia znakowego

 return new InputSource(reader);

 }

 else return null;

 } //resolveEntity()

 } //class MyResolver

Interfejs Locator służy do kojarzenia zdarzenia SAX z miejscem w dokumencie w

którym nastąpiło wywołanie wsteczne.

Wyniki dostarczone przez metody tego interfejsu będą określone tylko w zakresie

metod obiektu ContentHandler.

Parser SAX nie musi dostarczać obiektu typu Locator ale jego utworzenie jest

bardzo pożyteczne .

Funkcje interfejsu Locator

 int getColumnNumber ()

dostarcza numer kolumny w dokumencie XML, gdzie wystąpiło zdarzenie.

 int getLineNumber ()

dostarcza numer wiersza w dokumencie XML, gdzie wystąpiło zdarzenie.

 String getPublicId ()

dostarcza identyfikator publiczny zdarzenia.

 String getSystemId ()

dostarcza identyfikator systemowy zdarzenia..

 Interfejs XMLReader służy do czytania dokumentu XML za pomocą wywołań

wstecznych ("callback").

Musi być implementowany prze parser SAX2.

Funkcje interfejsu XMLReader

 ContentHandler getContentHandler ()

dostarcza zarejestrowany obiekt typu ContentHandler.

 DTDHandler getDTDHandler ()

dostarcza zarejestrowany obiekt typu DTDHandler.

 EntityResolver getEntityResolver ()

dostarcza zarejestrowany obiekt typu EntiityResolver.

 ErrorHandler getErrorHandler ()

dostarcza zarejestrowany obiekt typu ErrorHandler.

 boolean getFeature (String name)

dostarcza stan podanej cechy parsera.

 Object getProperty (String name)

dostarcza obiekt podanej właściwości parsera.

 void parse (InputSource input)

analizuje dokument XML podany jako obiekt typu InputSource.

 void parse (String systemId)

analizuje dokument XML na podstawie identyfikatora systemowego.

 void setContentHandler (ContentHandler handler)

rejestruje obiekt typu ContentHandler.

 void setDTDHandler (DTDHandler handler)

rejestruje obiekt typu DTDHandler.

 void setEntityResolver (EntityResolver resolver)

rejestruje obiekt typu EntityResolver.

 void setErrorHandler (ErrorHandler handler)

rejestruje obiekt typu ErrorHandler.

 void setFeature (String name, boolean value)

włącza lub wyłącza nazwaną cechę parsera .

 void setProperty (String name, Object value)

ustawia nazwaną właściwość parsera i obiekt wykorzystywany do jej

realizacji.

 W podstawowym interfejsie XMLReader zdefiniowano 2 funkcje do ustalania

właściwości i cech danej implementacji parsera oraz 2 funkcje do uzyskiwania

informacji o właściwościach i cechach danej implementacji parsera. Są to funkcje:

 void setProperty(String propertyName,Object obj)

 void setFeature(String featureName,boolean state)

 Object getProperty(String propertyName)

 boolean getFeature(String featureName)

W tych funkcjach parametry: propertyName i featureName są pełnymi

identyfikatorami URI(np.URL), obiekt obj jest obiektem wykorzystywanym do

realizacji określonej właściwości.

Identyfikator URI właściwości Opis właściwości

http://xml.org/sax/properties/lexical-handler Ustalenie implementacji

interfejsu LexicalHandler do obsługi

komentarzy i odwołań do definicji DTD

http://xml.org/sax/properties/declaration-

handler

Ustalenie implementacji

interfejsu DeclHandler do obsługi zawężeń

DTD

http://xml.org/sax/properties/dom-node Pobranie węzła bieżącego lub głównego przy

przetwarzaniu w modelu DOM

http://xml.org/sax/properties/xml-string Pobranie tekstu, który spowodował zajście

bieżącego zdarzenia

Identyfikator URI cechy Opis cechy

http://xml.org/sax/features/namespaces Wykonywanie przetwarzania przestrzeni

nazw

http://xml.org/sax/features/namespace-

prefixes

Komunikowanie o atrybutach deklaracji

przestrzeni nazw

http://xml.org/sax/features/string-interning Internalizacja nazw elementów,

przedrostków, identyfikatorów URI

http://xml.org/sax/features/validation sprawdzanie poprawności dokumentu XML

http://xml.org/sax/features/external-general-

entities

Przetwarzanie zewnętrznych encji (ogólnych)

http://xml.org/sax/features/external-

parameter-entities

Przetwarzanie zewnętrznych encji

(parametrów)

Interfejsy i klasy pakietu org.xml.sax.helpers

Pakiet ten zawiera klasy pomocnicze (implementacje interfejsów) dla

pakietu org.xml.sax.`

Typ Nazwa Opis

klasy

AttributesImpl Domyślna implementacja Attribute-dodawanie i

usuwanie atrybutów

DefaultHandler Domyślna klasa bazowa dla obsługi zdarzeń SAX2 -

puste implementacje interfejsów obsługi SAX:

EntityResolver, DTDHandler, ContentHandler,

ErrorHandler

LocatorImpl Implementacja interfejsu Locator, ustawienie numerów

wierszy i kolumn

NamespaceSupport Obsługa przestrzeni nazw

ParserAdapter Adaptacja parsera SAX1 do SAX2

XMLFilterImpl Domyślna implementacja Filter ; implementuje

XMLFilter, EntityResolver, DTDHandler,

ContentHandler

XMLReaderAdapter Adaptacja parsera SAX2 do SAX1

XMLReaderFactory Tworzenie implementacji XMLReader wg nazwy lub

właściwości

Bardzo ważną klasą pomocniczą jest klasa XMLReaderFactory do tworzenia

egzemplarza parsera.

Funkcje klasy XMLReaderFactory

static XMLReader createXMLReader()

tworzenie obiektu typy XMLReader na podstawie właściwości

systemowej org.xml.sax.driver

static XMLReader createXMLReader(String className)

tworzenie obiektu typy XMLReader na podstawie nazwy klasy

parsera.

Metody powyższe nie będą użyteczne w środowiskach, gdzie właściwości

systemowe są niedostępne lub program nie może ładować dynamicznie klas.

Przykład utworzenia egzemplarza XMLReader:

 try { XMLReader myReader = XMLReaderFactory.createXMLReader(); }

 catch (SAXException e) { System.out.println(e.getMessage()); }

Na zakończenie podamy jeszcze dwa interfejsy rozszerzające możliwości analizy.

Interfejsy pakietu org.xml.sax.ext

Typ Nazwa Opis

interfejsy DeclHandler Rozszerzenie obsługi zdarzeń deklaracji DTD w SAX2

LexicalHandler Rozszerzenie obsługi zdarzeń leksykalnych w

SAX2:DTD, encji, komentarzy

Przykład szablonu programu wykorzystującego do przetwarzania dokumentu XML

poznane interfejsy i klasy. Czytelnik powinien znaleźć w tym programie omawiane

interfejsy i klasy i zaobserwować ich funkcjonalność uruchamiając ten program.

//import poszczególnych klas potrzebnych do przetwarzania

//można zastąpić importem całych pakietów, ale tak widać które

//konkretnie klasy są wykorzystywane w programie

import java.io.*;

import org.xml.sax.Attributes;

import org.xml.sax.ContentHandler;

import org.xml.sax.ErrorHandler;

import org.xml.sax.Locator;

import org.xml.sax.XMLReader;

import org.xml.sax.helpers.XMLReaderFactory;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

//import klasy producenta parsera SAX potrzebny

//gdy chcemy utworzyć jego obiekt za pomocą new SAXParser()

import org.apache.xerces.parsers.SAXParser;

class SAX {

 public static void main(String[] args)

 {

 String xmlResource="";

 int index = 0;

 index = Integer.parseInt(args[0]);

 // nazwy plików XML

 String[] file = {"item.xml","chessboard.xml","contents.xml"};

 try {

 // pobranie ścieżki pliku do przetworzenia

 xmlResource = "file:\\" + new File(file[index]).getAbsolutePath();

 System.out.println(xmlResource);

 }

 catch(Exception e){}

 System.out.println("Przetwarzanie pliku: " + xmlResource + "\n");

 // utworzenie obiektu obsługi zawartości

 ContentHandler contentHandler = new MyContentHandler();

 //utworzenie obiektu obsługi błędów

 ErrorHandler errorHandler = new MyErrorHandler();

 try {

 // utworzenie instancji parsera

 XMLReader parser =

 XMLReaderFactory.createXMLReader(

 "org.apache.xerces.parsers.SAXParser");

 //inny sposób utworzenia parsera SAX

 //XMLReader parser = new SAXParser();

 System.out.println("parser= "+ parser);

 // zarejestrowanie obiektu obsługi zawartości

 parser.setContentHandler(contentHandler);

 // zarejestrowanie obiektu obsługi błędów

 parser.setErrorHandler(errorHandler);

 // wyłączenie sprawdzania poprawności

 parser.setFeature(

 "http://xml.org/sax/features/validation",false);

 // włączenie obsługi przestrzeni nazw

 parser.setFeature(

 "http://xml.org/sax/features/namespaces",true);

 // analiza dokumentu XML

 parser.parse(xmlResource);

 }

 catch (IOException e) {

 System.out.println("Błąd czytania pliku XML: " + e.getMessage());

 }

 catch (SAXException e) {

 System.out.println("Błąd analizy pliku XML: " + e.getMessage());

 }

 } //main()

} // class SAXParser

class MyContentHandler implements ContentHandler {

 String data = "";

 private Locator locator; //przechowuje obiekt lokalizacji zdarzeń

 //ustalenie obiektu lokalizującego

 public void setDocumentLocator(Locator locator) {

 this.locator = locator;

 System.out.println("Ustalenie obiektu lokalizującego");

 }

 //początek przetwarzania dokumentu

 public void startDocument() throws SAXException {

 System.out.println("Początek przetwarzania");

 }

 //koniec przetwarzania dokumentu

 public void endDocument() throws SAXException {

 System.out.println("Koniec przetwarzania");

 }

 //napotkanie instrukcji przetwarzania

 public void processingInstruction(String target, String data)

 throws SAXException {

 System.out.println("PI: Cel PI:" + target + " Dane:" + data);

 }

 //początek odwzorowania przestrzeni nazw

 public void startPrefixMapping(String prefix, String uri) {

 System.out.println(

 "Przedrostek " + prefix +" odwzorowywany na " + uri

);

 }

 //koniec odwzorowywania przestrzeni nazw

 public void endPrefixMapping(String prefix) {

 System.out.println("koniec odwzorowywania przedrostka " + prefix);

 }

 //początek elementu;pobranie nazwy elementu,atrybutu i jego wartości

 public void startElement(

 String namespaceURI, String localName,String rawName, Attributes

atts

)

 throws SAXException {

 System.out.print("początek elementu " + localName);

 if (!namespaceURI.equals("")) {

 System.out.println(

 " nazwa elementu " + namespaceURI + " [" + rawName + "]");

 }

 else System.out.println(" brak przestrzeni nazw");

 for (int i=0; i<atts.getLength(); i++)

 System.out.println(

 " Atrybut: " + atts.getLocalName(i) +"=" +

atts.getValue(i));

 //dane znakowe elementu

 System.out.println("dane elementu " + localName + ":" + data);

 }//startElement()

 //koniec elementu

 public void endElement(

 String namespaceURI, String localName, String rawName

)

 throws SAXException {

 System.out.println("koniec elementu: " + localName + "\n");

 }

 //dane znakowe elementu

 public void characters(char[] ch, int start, int end)

 throws SAXException {

 data = new String(ch, start, end);

 }

 //pominięte białe znaki

 public void ignorableWhitespace(char[] ch, int start, int end)

 throws SAXException {

 String s = new String(ch, start, end);

 System.out.println("pominięte białe znaki: [" + s + "]");

 }

 //nie analizowane encje

 public void skippedEntity(String name) throws SAXException {

 System.out.println("Nie analizowane encja " + name);

 }

}

class MyErrorHandler implements ErrorHandler {

 //ostrzeżenie:czegoś brakuje lub coś jest niewłaściwe

 public void warning(SAXParseException e)

 throws SAXException {

 System.out.println(

 "*Ostrzeżenie w czasie analizy*\n" +

 " Linia: " + e.getLineNumber() + "\n" +

 " URI: " + e.getSystemId() + "\n" +

 " Komunikat: " + e.getMessage());

 throw new SAXException("Ostrzeżenie");

 }

 //błąd niekrytyczy;naruszona zasada XML;kontynuacja analizy

 public void error(SAXParseException e)

 throws SAXException {

 System.out.println(

 "**Parsing Error**\n" +

 " Linia: " + e.getLineNumber() + "\n" +

 " URI: " + e.getSystemId() + "\n" +

 " Komunikat: " + e.getMessage());

 throw new SAXException("Błąd niekrytyczny");

 }

 //błąd krytyczny;naruszone zasada XML;niemożność kontynuacji analizy

 public void fatalError(SAXParseException e)

 throws SAXException {

 System.out.println(

 "**Parsing Fatal Error**\n" +

 " Linia: " + e.getLineNumber() + "\n" +

 " URI: " + e.getSystemId() + "\n" +

 " Komunikat: " + e.getMessage());

 throw new SAXException("Błąd krytyczny");

 }

}//class SAX

4.4. Model DOM

Model DOM (Document Object Model) został zdefiniowany przez W3C DOM

Working Group. DOM umożliwia dostęp do danych oraz manipulowanie danymi.

W interfejsie DOM dokument XML reprezentowany jest jako struktura drzewa-

cały dokument XML jest wczytywany do pamięci a wszystkie dane umieszczane są

w węzłach tego drzewa. Aplikacja może działać teraz na strukturze drzewa

przeszukując węzły i przetwarzając dane w węzłach.

Jednakże umieszczanie całego dokumentu w pamięci powoduje dla dużych

dokumentów wyraźne spowolnienie przetwarzania a nawet uniemożliwienie

dalszego działania aplikacji.

Odpowiedni dla modelu DOM pakiet Javy to: org.w3c.dom.Nie będziemy ty

razem dokładnie omawiać tych interfejsów. Podamy później ich zastosowanie na

konkretnym przykładzie programu analizującego.

Interfejsy i klasy pakietu org.w3c.dom

Typ Nazwa Opis

Interfejsy Attr Ustawianie wartości atrybutu, dostęp do nazwy I

wartości

CDATASection Rozszerza Text; znacznik sekcji CDATA

CharacterData Dostęp do węza tekstowego, ustawianie jego

wartości, operacje na znakach

Comment Reprezentacja (znacznik) komentarza

Document Reprezentacja dokumentu XML; tworzenie

nowych elementów XML

DocumentFragment Operowanie na części obiektu Document

DocumentType Reprezentacja deklaracji DOCTYPE z dokumentu

XML

DOMImplementation Udostępnienie implementacji parsera DOM

określonego producenta

Element Reprezentacja elementu XML; nazwy I atrybuty

elementów, ustawianie wartości

Entity Reprezentacja encji; dostęp do identyfikatorów

EntityReference Reprezentacja wyniku przetworzenia encji

NamedNodeMap Lista węzłów nazwanych

Node Główny interfejs dla DOM; operacje na węzłach

NodeList Kolekcja węzlów

Notation Reprezentacja konstrukcji NOTATION z

DTD(deklarowanie encji lub PI)

ProcessingInstruction Reprezentacja instrukcji przetwarzania (PI)

Text Reprezentacja danych tekstowych elementu XML

Klasy

wyjątków

DOMException Zgłaszany w wyniku błędu przetwarzania, zawiera

kody błędów

Struktura drzewa w modelu DOM:

Nie będziemy tutaj omawiali funkcjonalności tych interfejsów - przedstawimy

niektóre z metod na konkretnym przykładzie analizy dokumentu XML w

modelu DOM.

import java.io.*;

//importy pakietów DOM

import org.w3c.dom.Document;

import org.w3c.dom.DocumentType;

import org.w3c.dom.NamedNodeMap;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

//import klasy parsera danego producenta

import org.apache.xerces.parsers.DOMParser;

public class DOM {

 public static void main (String args []) throws IOException {

 int index = 0;

 index = Integer.parseInt(args[0]);

 // nazwy plików XML

 String[] file={"item.xml","chessboard.xml","contents.xml"};

 try {

 // pobranie ścieżki do pliku do przetworzenia

 String xmlResource = "file:\\" + new

File(file[index]).getAbsolutePath();

 System.out.println(xmlResource);

 //utworzenie parsera danego producenta

 DOMParser parser = new DOMParser();

 //ustawienie cechy parsera 'validation'

 parser.setFeature("http://xml.org/sax/features/validation",false);

 //ustawienie cechy parsera 'namespaces'

 parser.setFeature("http://xml.org/sax/features/namespaces",true);

 //dokonanie analizy

 parser.parse(xmlResource);

 //uzyskanie wyniku analizy - obiektu typu Document

 Document doc = parser.getDocument();

 //wydrukowanie zawartości drzewa którego węzłem jest obiekt typu

Document

 printTree(doc, "");

 }

 catch(Exception e) {e.printStackTrace();}

 }//main()

 public static void printTree(Node node,String insets)

 {

 switch(node.getNodeType()){ //określenie typu węzła

 case Node.DOCUMENT_NODE: //węzeł typu Document

 //DOM-Level2 nie udostępnia deklaracji XML

 System.out.println("<xml version=\"1.0\">\n");

 Document doc=(Document)node;

 //pobranie elementu głównego i wywołanie rekurencyjne printTree()

 printTree(doc.getDocumentElement(),"");

 break;

 case Node.ELEMENT_NODE: //węzeł typu NODE

 String name=node.getNodeName();

 System.out.print(insets+"<"+name);

 NamedNodeMap attributes=node.getAttributes();

 for(int i=0;i<attributes.getLength();i++){

 Node current=attributes.item(i);

 System.out.print(" "+current.getNodeName()+

 "=\""+current.getNodeValue()+"\"");

 }

 System.out.print(">"); //formatowanie

 //rekurencyjne przetwarzanie elementów potomnych

 NodeList children = node.getChildNodes();

 if(children!=null)

 for(int i=0;i<children.getLength();i++)

 printTree(children.item(i),insets + " ");

 break;

 case Node.TEXT_NODE: //węzeł typu Text

 //wyświetlenie danych tekstowych

 System.out.print(node.getNodeValue());

 break;

 case Node.CDATA_SECTION_NODE: //węzeł typu CDATASection

 //wyświetlenie danych tekstowych z bloku CDATA

 System.out.print(node.getNodeValue());

 break;

 case Node.PROCESSING_INSTRUCTION_NODE: //węzeł typu

ProcessingInstruction

 //wyświetlenie instrukcji przetwarzania PI

 System.out.print("<?"+node.getNodeName()+

 " "+node.getNodeValue()+ "?>");

 break;

 case Node.ENTITY_REFERENCE_NODE: //węzeł typu EntityReference

 //wyświetlenie encji...

 break;

 case Node.DOCUMENT_TYPE_NODE: //węzeł typu DocumentType

 //wyświetlenie deklaracji DTD...

 break;

 } //switch

 } //printTree()

} //class DOM

Jak widać z tego przykładu cała struktura elementów XML w postaci drzewa jest

przetwarzana przez program.

Porównanie głównych cech interfejsów SAX i DOM umożliwia poniższa tabela:

Interfejs SAX Interfejs DOM

Dane pobierane w obsłudze zdarzeń Dane pobierane ze struktury drzewa

Sekwencyjny dostęp do danych Swobodny dostęp do danych

Małe zużycie pamięci Znaczne zużycie pamięci

Przetwarzanie w pamięci części

dokumentu

Przetwarzanie w pamięci

całego dokumentu

Przetwarzanie jednokrotne dokumentu Przetwarzanie wielokrotne dokumentu

Pewnej alternatywy w stosunku do obu modeli dostarcza model JDOM, który

omawiamy w następnym punkcie.

4.5. Model JDOM

JDOM został wyspecyfikowany przez Bretta McLaughlina i Jasona Huntera (K&A

Sofware).

Interfejs JDOM jest zamiennikiem (w większości zastosowań)

interfejsu SAX lub DOM bazującym na Javie ale nie jest oparty ani na SAX ani

na DOM.

Pozwala utworzyć dokument XML o strukturze drzewa bez stosowania rozwiązań

typowych dla DOM, a jednocześnie jest bardzo szybki podobnie jak SAX.

Ponadto zawiera konkretne klasy (a nie tylko interfejsy) umożliwiające

bezpośrednie tworzenie obiektów.

Odpowiednie dla modelu JDOM pakiety Javy to : org.jdom, org.jdom.input,

org.jdom.output,org.jdom.adapters, org.jdom.filter, org.jdom.transform

Interfejsy i klasy pakietu org.jdom

Typ Nazwa Opis

Interfejsy

Attribute reprezentacja atrybutu XML; uzyskanie

wartości atrybutu; informacja o przestrzeni

nazw

CDATA reprezentacja sekcji CDATA z dokumentu

XML

Comment Tekst komentarza

DocType Reprezentacja deklaracji DOCTYPE z

dokumentu XML

Document reprezentacja dokumentu XML; ustawienie i

pobranie wartości DocType i listy instrukcji

PI

Element Reprezentacja elementu XML z obsługą

przestrzeni nazw

EntityRef Reprezentacja referencja zawartej w encji

NameSpace Reprezentacja przestrzeni nazw; tworzenie

przestrzeni nazw

ProcessingInstruction Reprezentacja instrukcji PI; pobranie i

ustawienie danych instrukcji

Text zawartość tekstowa dokumentu XML

Verifier Weryfikacja nazw, danych i innych

komponentów XML

Klasy

wyjątków

DataConversionException Rozszerza JDOMException; błąd konwersji

elementu Attribute lub Element na określony

typ

IllegalADDException dodawanie nielegalnego obiektu do struktury

JDOM

IllegalDataException dodawanie nielegalnego tekstu do struktury

JDOM

IllegalNameException dodawanie nazwy do struktury JDOMnie

spełniającej konwencji XML

IllegalTargetException dodawanie nielegalnego obiektu docelowego

do struktury JDOMo niewłaściwej nazwie

JDOMException Podstawowy wyjątek JDOM; komunikaty o

błędach

Klasy pakietu org.jdom.adapters :

Pakiet ten zawiera klasy adapterów pozwalające na uzyskanie obiektu DOM

Document z dowolnego parsera DOM

Typ Nazwa Opis

Interfejs DOMAdapter Interfejs, który musi by zaimplementowany przez

klasy adapterów

 AbstractDOMAdapter Implementacja DOMAdapter

CrimsonDOMAdapter Adapter dla parsera Crimson

Klasy

JAXPDOMAdapter Adapter dla parsera JAXP

OracleV1DOMAdapter Adapter dla parsera Oracle Version1

OracleV2DOMAdapter Adapter dla parsera Oracle Version2

ProjectXDOMAdapter Adapter dla parsera Sun Project X

XercesDOMAdapter Adapter dla parsera Apache Xerces

XML4JDOMAdapter Adapter dla parsera IBM XML4J DOM

 Interfejsy i klasy pakietu org.jdom.input

Typ Nazwa Opis

Interfejsy JDOMFactory Implementowany do tworzenia obiektów JDOM

Klasy

BuilderErrorHandler Implementuje org.xml.sax.ErrorHandler

DefaultJDOMFactory Tworzenie klas JDOM(Element,Document,Comment itd.)

DOMBuilder Tworzenie obiektu JDOM Document na bazie parsera DOM

SAXBuilder Tworzenie obiektu JDOM Document na bazie parsera SAX

SAXHandler Obsługa i pomoc dla SAX Builder

Interfejsy i klasy pakietu org.jdom.output

Typ Nazwa Opis

klasy

DOMOutputter Przetwarza drzewo JDOM na drzewo DOM

SAXOutputter dla drzewa JDOM generuje zdarzenia SAX2

XMLOutputter Obsługa wyjściowego obiektu Document; wysłanie

do strumienia OutputStream w formacie XML

Interfejsy i klasy pakietu org.jdom.filter

Typ Nazwa Opis

Interfejsy Filter Filtrowanie listy obiektów JDOM

Klasy ContentFilter Implementacja Filter; filtrowanie zawartości

elementu

ElementFilter Implementacja Filter; filtrowanie elementów

Obiekt ContentFilter opisuje wszystkie dozwolone obiekty JDOM i pozwala

ustalać widoczność tych obiektów. Filtrowanie jest dokonywane za pomocą

odpowiedniej maski w której każdy bit informuje o tym czy obiekt JDOM ma być

widoczny czy nie.

Przykładowo w celu uwidocznienia węzłów typu Text i CDATA w

elemencie elem użyć można następujących instrukcji:

 Filter filter = new ContentFilter(ContentFilter.TEXT |

ContentFilter.CDATA);

 List content = elem.getContent(filter);

Alternatywą dla maskowania bitów jest użycie odpowiednich funkcji filtrujących

jak w przykładzie, gdzie chcemy uwidocznić tylko węzły typu Comment:

 Filter filter = new ContentFilter();

 Filter.setCommentVisible(true);

 List content = elem.getContent(filter);

Klasy pakietu org.jdom.transform

Typ Nazwa Opis

Klasy JDOMResult Przechowuje wynik transformacji XSLT w postaci

dokumentu JDOM

JDOMSource Stanowi źródło dokumentu JDOM dla transformacji

XSLT

Następujący przykład pokazuje jak zastosować transformację XSLT do dokumentu

JDOM i uzyskać wynik w postaci innego dokumentu JDOM:

 public static Document transform(Document in, String stylesheet)

 throws JDOMException {

 try {

 Transformer transformer =

 TransformerFactory.newInstance().newTransformer(new

StreamSource(stylesheet));

 JDOMResult out = new JDOMResult();

 transformer.transform(new JDOMSource(in), out);

 return out.getDocument();

 }

 catch (TransformerException e) {

 throw new JDOMException("XSLT Transformation failed", e);

 }

 }

Następny program prezentuje przetwarzanie dokumentu XML za pomocą

interfejsów JDOM. Do sformatowania wyników przetwarzania użyto

obiektu XMLOutputter.

import java.io.*;

import org.jdom.*;

import org.jdom.input.*;

import org.jdom.output.*;

import org.w3c.dom.*;

import org.xml.sax.*;

import javax.xml.parsers.*;

//--

public class JDOM {

 public static void main (String args [])

 throws

IOException,JDOMException,ParserConfigurationException,SAXException

 {

 int index=0;

 index=Integer.parseInt(args[0]);

 String xmlFile="";

 // nazwy plików XML

 String[] file = {"item.xml","chessboard.xml","contents.xml"};

 try {

 // pobranie ścieżki pliku do przetworzenia

 xmlFile = "file:\\" + new File(file[index]).getAbsolutePath();

 System.out.println(xmlFile);

 }

 catch (Exception e) { e.printStackTrace(); }

 System.out.println();

 System.out.println(

 "### budowanie dokumentu JDOM za pomocą SAXBuilder z pliku XML "

);

 // budowanie dokumentu JDOM za pomocą SAXBuilder z pliku XML

 saxDocument(xmlFile);

 System.out.println();

 // budowanie dokumentu JDOM za pomocą DOMBuilder z dokumentu DOM

 System.out.println(

 "### budowanie dokumentu JDOM za pomocą DOMBuilder z dokumentu DOM "

);

 domDocument(xmlFile);

 System.exit(0);

 }//main()

 public static void saxDocument(String fileName)

 throws IOException,JDOMException

 {

 //utworzenie SAXBuilder bez sprawdzania poprawności dokumentu

 SAXBuilder builder = new SAXBuilder(false);

 //utworzenie obiektu typu JDOM Document

 org.jdom.Document doc = builder.build(fileName);

 //wydrukowanie dokumentu wyjściowego w formacie XML

 printDocument(doc);

 }

 public static void domDocument(String fileName)

 throws

ParserConfigurationException,SAXException,IOException,JDOMException

 {

 //utworzenie fabryki

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

 //utworzenie obiektu DocumentBuilder

 DocumentBuilder build = dbf.newDocumentBuilder();

 //utworzenie obiektu typu DOM-Document o strukturze drzewa

 org.w3c.dom.Document domDoc = build.parse(fileName);

 //brak sprawdzania poprawności dokumentu

 DOMBuilder builder = new DOMBuilder(false);

 //utworzenie obiektu typu JDOM-Document

 org.jdom.Document jdomDoc = builder.build(domDoc);

 //wydrukowanie dokumentu wyjściowego w formacie XML

 printDocument(jdomDoc);

 }

 public static void printDocument(org.jdom.Document doc)throws IOException

 {

 XMLOutputter fmt = new XMLOutputter();

 System.out.println(

"~~"

);

 fmt.output(doc,System.out);

 System.out.println(

"~~"

);

 }//printDocument()

}//class JDOM

Obiekt XMLOutputter jest szczególnie użyteczny gdy nie mamy gotowego

dokumentu XML lecz tworzymy go dynamicznie od podstaw.

Tworzenie dokumentu od podstaw i wyprowadzanie w postaci sformatowanej do

strumienia standardowego i do pliku ilustruje poniższy program.

import java.io.*;

import org.jdom.DocType;

import org.jdom.Document;

import org.jdom.Element;

import org.jdom.JDOMException;

import org.jdom.Namespace;

import org.jdom.output.XMLOutputter;

class XMLGenerator {

 public static void main(String[] args) {

 //uzyskanie obiektu Namespace

 Namespace ns = Namespace.getNamespace("JavaXML",

"http://www.pjwstk.edu.pl/javaxml/");

 // utworzenie korzenia pustego drzewa

 Element root = new Element("drzewo-rodowe", ns);

 Document doc = new Document(root);

 //tworzenie węzłów i dodawania na odpowiednich poziomach

 Element dziadek=new Element("dziadek",ns) ;

 dziadek.setAttribute("wiek","80").addContent("Jan");

 root.addContent(dziadek);

 Element ojciec=new Element("ojciec",ns) ;

 ojciec.setAttribute("wiek","50").addContent("Kazimierz");

 dziadek.addContent(ojciec);

 Element syn=new Element("syn",ns) ;

 syn.setAttribute("wiek","20").addContent("Ryszard");

 ojciec.addContent(syn);

 Element corka=new Element("corka",ns) ;

 corka.setAttribute("wiek","18").addContent("Katarzyna");

 ojciec.addContent(corka);

 try {

 //konfiguracja obiektu formatującego: 2 spacje wcięć,nowa linia

 XMLOutputter fmt = new XMLOutputter(" ",true);

 //wydrukowanie na konsolę sformatowanego dokumentu

 fmt.output(doc,System.out);

 //wydrukowanie do pliku sformatowanego dokumentu

 FileOutputStream fos = new FileOutputStream("drzewo.xml");

 fmt.output(doc, fos);

 }

 catch(IOException e){e.printStackTrace();}

 }//main()

}//class XMLGenerator

4.6. Zastosowanie JAXP

Stosowanie interfejsów SAX i DOM wymaga importowania i odwoływania się do

klas parsera danego producenta, a za tym idzie przy zmianie parsera wymaga

zmiany kodu i rekompilacji.

Wyjściem z tej sytuacji jest stosowanie interfejsu JAXP (Java API for XML

Parsing).Tutaj klasę parsera definiujemy za pomocą właściwości systemowej

"javax.xml.parsers.SaxParserFactory" lub

"javax.xml.parsers.DocumentBuilderFactory" przy użyciu opcji -D w linii komend

lub System.setProperty() w kodzie Javy. Zmiana implementacji parsera wymaga

tylko zmiany tej właściwości.

Podstawowy pakiet JAXP to javax.xml.parsers.

 Interfejsy i klasy pakietu javax.xml.parsers

Typ Nazwa Opis

zawartość pliku drzewo.xml po zadziałaniu programu

<?xml version="1.0" encoding="UTF-8"?>

<JavaXML:drzewo-rodowe xmlns:JavaXML="http://www.pjwstk.edu.pl/javaxml/">

 <JavaXML:dziadek wiek="80">

 Jan

 <JavaXML:ojciec wiek="50">

 Kazimierz

 <JavaXML:syn wiek="20">Ryszard</JavaXML:syn>

 <JavaXML:corka wiek="18">Katarzyna</JavaXML:corka>

 </JavaXML:ojciec>

 </JavaXML:dziadek>

</JavaXML:drzewo-rodowe>

Klasy

DocumentBuilderFactory Tworzenie egzemplarzy

DocumentBuilder;

włączenie/wyłączenieobsługi przestrzeni

nazw lub sprawdzania poprawności

DocumentBuilder Implementowana przez parser DOM;

przetwarzanie niezależnie od producenta

SAXParserFactory Tworzenie egzemplarzy SAXParser;

włączenie/wyłączenie obsługi przestrzeni

nazw lub sprawdzania poprawności

SAXParser Implementowana przez parser SAX;

przetwarzanie niezależnie od producenta

Klasy

wyjątków

ParserConfigurationException Błąd zgłoszenia pobrania parsera gdy

podane ustawienia są niewłaściwe

FactoryConfigurationError Nie jest możliwe utworzenie egzemplarza

klasy

Tworzenie

egzemplarzy DocumentBuilderFactory lub SAXParserFactory możliwe jest za

pomocą statycznej metody newInstance() z tych klas.

Metoda ta używa następującego porządku poszukiwania klasy implementującej do

załadowania do JVM:

• sprawdza

właściwość systemową "javax.xml.parsers.DocumentBuilderFactory/S

AXParserFactory"

• korzysta z pliku konfiguracyjnego

"jre/lib/jaxp.properties" zawierającego kwalifikowaną nazwę

klasy implementującej.

• uruchamia Services API do poszukiwania nazwy klasy w plikach .jar

dostępnych na ścieżce klas.

• stosuje domyślną instancję klasy dostępną na platformie.

Porządek ten należy uwzględniać chcąc uzyskać działanie określonego parsera.

Poniższy program pokazuje wykorzystanie klas JAXP do przetwarzania

niezależnego od producenta w modelu SAX.

import java.io.*;

import java.util.ArrayList;

import java.util.Hashtable;

import java.util.Enumeration;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

//import klas JAXP

import javax.xml.parsers.SAXParserFactory;

import javax.xml.parsers.SAXParser;

class SAX_JAXP {

 public static void main (String args []) throws IOException {

 int index = 0;

 index = Integer.parseInt(args[0]);

 // nazwy plików XML

 String[] file = {"item.xml","chessboard.xml","contents.xml"};

 try {

 // pobranie ścieżki pliku do przetworzenia

 String xmlResource = "file:\\" + new

File(file[index]).getAbsolutePath();

 System.out.println(xmlResource);

 // utworzenie obiektu SAXParserFactory

 SAXParserFactory spf = SAXParserFactory.newInstance();

 // utworzenie obiektu SAXParser

 SAXParser sp = spf.newSAXParser();

 System.out.println("parser = " + sp);

 //obsługa przestrzeni nazw

 spf.setNamespaceAware(true);

 // utworzenie obiektu SAXHandler do obsługi zdarzeń

 SAXHandler handler = new SAXHandler();

 //uruchomienie analizy z podaną obsługą zdarzeń

 sp.parse(xmlResource, handler);

 // pobranie kolekcji wynikowych

 ArrayList[] tagData=handler.getArrays();

 // wydrukowanie zawartości kolekcji

 System.out.println("----Znaczniki i dane znaczników----------");

 for(int i=0;i<tagData[0].size();i++){

 System.out.println("<"+tagData[0].get(i)+">"+"

"+tagData[1].get(i));

 }

 }

 catch (Exception e) { e.printStackTrace(); }

 System.exit(0);

 }

}//class SAX_JAXP

//---

class SAXHandler extends DefaultHandler {

//DefaultHandler -

//puste implementacje ContentHandler,ErrorHandler,DTDHandler,EntityResolver

//--------implementacja ContentHandler------------------

 private Locator locator;

 // utworzenie dwóch kolekcji typu ArrayList do nazw znaczników i danych

 private ArrayList[] list=new ArrayList[]{new ArrayList(),new

ArrayList()};

 private String currentElement = null;

 private String currentData = null;

 public void setDocumentLocator(Locator locator)

 {

 this.locator = locator;

 }

 public void startDocument()throws SAXException

 {

 System.out.println("==== start

document:line="+locator.getLineNumber());

 }

 public void endDocument()throws SAXException

 {

 System.out.println("=== stop document:line="+locator.getLineNumber());

 }

 //napotkano instrukcję przetwarzania PI

 public void processingInstruction(String target,String data)

 throws SAXException {

 System.out.println("PI: target="+target+" data="+data);

 }

 //początek odwzorowywania przedrostka przestrzeni nazw

 public void startPrefixMapping(String prefix,String uri)

 throws SAXException {

 System.out.println("prefix = "+prefix+":"+uri);

 }

 //koniec odwzorowywania przedrostka przestrzeni nazw

 public void endPrefixMapping(String prefix)

 throws SAXException {

 System.out.println("prefix =" + prefix);

 }

 // metoda dostępu do przetworzonych wartości-obiekty ArrayList

 public ArrayList[] getArrays()

 {

 return list;

 }

 // metoda wywoływana kiedy analizowany jest nowy element

 public void

 startElement(String nsUri,String localName,String tag, Attributes attrs)

 throws SAXException {

 //zapamiętanie etykiety nowego elementu

 currentElement = tag;

 System.out.println("TAG =" + tag);

 for(int i=0;i<attrs.getLength();i++){

 System.out.println("line = " + locator.getLineNumber()+

 ": atrybut " + attrs.getQName(i) + "=" + attrs.getValue(i));

 }

 System.out.println("data for " + tag + " tag" + ":" + currentData);

 }

 // informacja o białych znakach

 public void ignorableWhitespace(char[] ch,int start,int end)

 throws SAXException

 {

 }

 // wywoływana po znalezieniu danych w elemencie

 public void characters(char[] ch, int start, int length)

 throws SAXException {

 //utworzenie łańcucha ze znaków znalezionych w elemencie

 currentData = new String(ch, start, length).trim();

 if(currentData.equals(""))currentData = null;

 if (currentData != null) {

 list[0].add(currentElement);

 list[1].add(currentData);

 }

 }

 // wywoływana po znalezieniu znacznika końca elementu

 public void endElement(String nsUri,String localName,String tagEnd)

 throws SAXException

 {

 // znacznik końca elementu tagEnd

 System.out.println("TAG-END = " + tagEnd);

 }

 // gdy parser pomija encję

 public void skippedEntity(String name)throws SAXException

 {

 System.out.println("skipped entity");

 }

 //----------koniec implementacji ContentHandler----------

 //----------implementacja ErrorHandler-------------------

 //ostrzeżenie - niepoprawność składniowa dokumentu,

 //niezgodność z definicjami DTD

 public void warning(SAXParseException e)

 throws SAXException

 {

System.out.println("*warning:"+e.getMessage()+"/line="+e.getLineNumber());

 }

 //błąd niekrytyczny - niezgodność ze specyfikacją XML

 public void error(SAXParseException e)

 throws SAXException

 {

System.out.println("*error:"+e.getMessage()+"/line="+e.getLineNumber());

 }

 //błąd krytyczny - niepoprawne formatowanie dokumentu

 //zatrzymanie procesu przetwarzania

 public void fatalError(SAXParseException e)

 throws SAXException

 {

 System.out.println("*fatal

error:"+e.getMessage()+"/line="+e.getLineNumber());

 }

 //--------koniec imlementacji ErrorHandler--------------

}//class SAXHandler

 Poniższy program pokazuje wykorzystanie klas JAXP do przetwarzania

niezależnego od producenta w modelu DOM.

import java.io.*;

import org.w3c.dom.*;

import org.xml.sax.*;

//import klas JAXP

import javax.xml.parsers.*;

class DOM_JAXP {

 public static void main (String args []) throws IOException {

 int index = 0;

 index = Integer.parseInt(args[0]);

 // nazwy plików XML

 String[] file = {"item.xml","chessboard.xml","contents.xml"};

 try {

 // pobranie ścieżki pliku do przetworzenia

 String xmlResource = "file:\\" +

 new File(file[index]).getAbsolutePath();

 System.out.println(xmlResource);

 // utworzenie obiektu DocumentBuilderFactory

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

 //utworzenie obiektu DOMBuilder

 DocumentBuilder builder = dbf.newDocumentBuilder();

 System.out.println("parser= " + builder);

 //utworzenie obiektu typu DOM-Document o strukturze drzewa

 Document doc = builder.parse(xmlResource);

 //rekurencyjne wyświetlenie zawartości drzewa

 System.out.println();

 printTree(doc,"");

 }

 catch (Exception e) { e.printStackTrace(); }

 System.exit(0);

 }//main()

 public static void printTree(Node node,String insets)

 {

 switch(node.getNodeType()){

 case Node.DOCUMENT_NODE:

 //DOM-Level2 nie udostępnia deklaracji XML

 System.out.println("<xml version=\"1.0\">\n");

 Document doc=(Document)node;

 printTree(doc.getDocumentElement(),"");

 break;

 case Node.ELEMENT_NODE:

 String name=node.getNodeName();

 System.out.print(insets+"<"+name);

 NamedNodeMap attributes=node.getAttributes();

 for(int i=0;i<attributes.getLength();i++){

 Node current=attributes.item(i);

 System.out.print(" "+current.getNodeName()+

 "=\""+current.getNodeValue()+"\"");

 }

 System.out.print(">"); //formatowanie

 //rekurencyjne przetwarzanie elementów potomnych

 NodeList children=node.getChildNodes();

 if(children!=null)

 for(int i=0;i<children.getLength();i++)

 printTree(children.item(i),insets + " ");

 break;

 case Node.TEXT_NODE:

 //wyświetlenie danych tekstowych

 System.out.print(node.getNodeValue());

 break;

 case Node.CDATA_SECTION_NODE:

 //wyświetlenie danych tekstowych z bloku CDATA

 System.out.print(node.getNodeValue());

 break;

 case Node.PROCESSING_INSTRUCTION_NODE:

 //wyświetlenie instrukcji przetwarzania PI

 System.out.print("<?"+node.getNodeName()+

 " "+node.getNodeValue()+ "?>");

 break;

 case Node.ENTITY_REFERENCE_NODE:

 //wyświetlenie encji

 break;

 case Node.DOCUMENT_TYPE_NODE:

 //wyświetlenie deklaracji DTD

 break;

 }//switch

 }//printTree()

}//class DOM_JAXP

4.7. Przetwarzanie względem DTD

Specyfikacja DTD

Zadanie definicji DTD jest określenie sposobu formatowania danych.

Zdefiniowany musi być każdy element dozwolony w dokumencie XML, sposoby

zagnieżdżania elementów, atrybuty oraz zewnętrzne encje.

Konstrukcje DTD umożliwiają :

 a) określanie elementów

 <!ELEMENT [nazwa elementu] [definicja/typ elementu]>

 typ ANY oznacza element mogący zawierać dane tekstowe, inne elementy oraz

kombinacje obu poprzednich

 typ EMPTY oznacza element pusty

 typ (#PCDATA) oznacza typ przetwarzanych danych tekstowych

 b) określanie sposobu zagnieżdżania elementów

 <!ELEMENT [nazwa elementu] ([zagnieżdżony element] ,[zagnieżdżony

element]...)>

 c) grupowanie elementów, operatory rekurencji (wielokrotne

występowanie, powtórzenia)

 <!ELEMENT [nazwa elementu] ((grupa1Element1,grupa1Element2),

(grupa2Element1,grupa2Element2))>

 Do elementów jak również do każdej grupy elementów można stosować operatory

rekurencji określający ile razy ma pojawić się dany element czy dana grupa

elementów.

Operator rekurencji Opis operatora

Domyślnie Musi wystąpić dokładnie raz

? Musi wystąpić raz albo wcale

+ Musi wystąpić przynajmniej raz (1...n razy)

* Może wystąpić dowolną liczbę razy(0...n razy)

 d) definiowanie atrybutów i typy atrybutów

 <!ATTLIST [element zamykający] [nazwa atrybutu] [typ] [modyfikator]>

 typ CDATA oznacza atrybut o wartości tekstowej

 typ wyliczeniowy (wartość1|wartość2|...) umożliwia określenie wartości

atrybutu

 modyfikatory określają czy atrybut jest wymagany w danym elemencie :

 modyfikator #IMPLIED – atrybut nie jest wymagany

 modyfikator #REQUIRED – atrybut jest wymagany

 modyfikator #FIXED – określa że uzytkownik nie może zmienić wartości

atrybutu

 e) określanie encji

 <!ENTITY [nazwa encji] ”[znaki podstawiane/identyfikator]”>

Konstrukcja ta jak widać pozwala podać zarówno znaki podstawiane pod nazwę

encji jak i odwołanie do pliku zewnętrznego.W tym ostatnim przypadku trzeba

podać adres URI (np. URL) zasobu.

 f) określanie encji nieprzetwarzanej

 Encje nieprzetwarzane występują w dokumentach XML odwołujących się do

danych binarnych (np.plików multimedialnych).

 Ponieważ parser nie potrafi przetwarzać plików binarnych powinien te dane

pozostawić w postaci nieprzetworzonej.

 Przykładowo jeżeli w dokumencie XML mamy znacznik z encją:

 <myImage>&Image</myImage>

 to w dokumencie DTD umieszczamy następującą konstrukcję:

 <!ENTITY Image SYSTEM "images/duke.gif" NDATA gif>

Wystąpienie tej deklaracji w dokumencie DTD spowoduje wywołanie wsteczne

funkcji unparsedEntityDecl() z interfejsu DTDHandler.

Niezbędnym warukiem do tego jest przetwarzanie dokumentu przez parser z

zarejestrowaną implementacją DTDHandler.

 g) deklaracje notacji

Deklaracje notacji skojarzone są z encjami nieprzetwarzanymi i dla powyższej

deklaracji ma postać :

 <!NOTATION gif SYSTEM "http//www.gif.com">

Deklaracja ta wiąże typ nieprzetwarzanej encji(gif) z identyfikatorem URI danego

typu.

Wystąpienie tej deklaracji w dokumencie DTD spowoduje wywołanie wsteczne

funkcji notationDecl() z interfejsu DTDHandler.

Oczywistym warunkiem tego jest przetwarzanie dokumentu przez parser z

zarejestrowaną implementacją DTDHandler.

Podajemy teraz przykłady dokumentów DTD. W przykładach tych czytelnik

powinien rozpoznać omawiane konstrukcje DTD.

Dokument chessboard.dtd

<!ELEMENT CHESSBOARD (WHITEPIECES, BLACKPIECES)>

<!ENTITY % pieces "KING, QUEEN?, BISHOP?, BISHOP?, ROOK?,

ROOK?, KNIGHT?, KNIGHT?, PAWN?, PAWN?, PAWN?, PAWN?, PAWN?,

PAWN?, PAWN?, PAWN?" >

<!ELEMENT WHITEPIECES (%pieces;)>

<!ELEMENT BLACKPIECES (%pieces;)>

<!ELEMENT POSITION EMPTY>

<!ATTLIST POSITION COLUMN (A|B|C|D|E|F|G|H) #REQUIRED ROW

(1|2|3|4|5|6|7|8) #REQUIRED >

 <!ELEMENT KING (POSITION)>

<!ELEMENT QUEEN (POSITION)>

<!ELEMENT BISHOP (POSITION)>

 <!ELEMENT ROOK (POSITION)>

<!ELEMENT KNIGHT (POSITION)>

<!ELEMENT PAWN (POSITION)>

Dokument contents.dtd

 <!ELEMENT JavaXML:Book (JavaXML:Title, JavaXML:Contents,

JavaXML:Copyright)>

<!ATTLIST JavaXML:Book xmlns:JavaXML CDATA #REQUIRED >

<!ELEMENT JavaXML:Title (#PCDATA)>

<!ELEMENT JavaXML:Contents ((JavaXML:Chapter+) (JavaXML:Chapter+,

JavaXML:SectionBreak?)+)>

<!ELEMENT JavaXML:Chapter (JavaXML:Heading?,JavaXML:Topic+)>

<!ATTLIST JavaXML:Chapter focus (XML|Java) "Java" >

<!ELEMENT JavaXML:Heading (#PCDATA)>

<!ELEMENT JavaXML:Topic (#PCDATA)>

<!ATTLIST JavaXML:Topic subSections CDATA #IMPLIED >

<!ELEMENT JavaXML:SectionBreak EMPTY>

<!ELEMENT JavaXML:Copyright (#PCDATA)>

<!ENTITY OReillyCopyright

SYSTEM "http://www.oreilly.com/catalog/javaxml/docs/copyright.xml">

4.7.1. Przetwarzanie względem DTD w modelu SAX

Poniżej przedstawiono przykładowy program do analizy XML w modelu SAX ze

sprawdzaniem poprawności według definicji DTD. Do utworzenia instancji parsera

wykorzystano biblioteki JAXP1.0.

import java.io.*;

import java.util.ArrayList;

import java.util.Hashtable;

import java.util.Enumeration;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

import javax.xml.parsers.SAXParserFactory;

import javax.xml.parsers.SAXParser;

public class SAX_Valid_DTD {

 public static void main (String args []) throws IOException {

 // nazwy plików XML

 String[] file={"item.xml","chess.xml","contents.xml"};

 try {

 // pobranie ścieżki pliku do przetworzenia

 String xmlResource = "file:\\" + new

File(file[2]).getAbsolutePath();

 System.out.println(xmlResource);

 // utworzenie obiektu SAXParserFactory

 SAXParserFactory spf = SAXParserFactory.newInstance();

 //sprawdzanie poprawności dokumentu XML

 spf.setValidating(true);

 // utworzenie obiektu SAXParser

 SAXParser sp = spf.newSAXParser();

 //obsługa przestrzeni nazw

 spf.setNamespaceAware(true);

 // utworzenie obiektu SAXHandler do obsługi zdarzeń

 SAXHandler handler = new SAXHandler();

 //uruchomienie analizy z podaną obsługą zdarzeń

 sp.parse(xmlResource, handler);

 // pobranie kolekcji wynikowych

 ArrayList[] tagData=handler.getArrays();

 // wydrukowanie zawartości kolekcji

 System.out.println("\n----Znaczniki i dane znaczników----------");

 for(int i=0;i<tagData[0].size();i++){

 System.out.println("<"+tagData[0].get(i)+">"+"

"+tagData[1].get(i));

 }

 }

 catch (Exception e) { e.printStackTrace(); }

 System.exit(0);

 }

 }

 //---

 class SAXHandler extends DefaultHandler {

 //...tak jak w programie SAX_JAXP w punkcie 4.6

 }//class SAXHandler

4.7.2. Przetwarzanie względem DTD w modelu DOM

import java.io.*;

import org.w3c.dom.*;

import org.xml.sax.*;

import javax.xml.parsers.*;

//--

class DOM_Valid_DTD {

 public static void main (String[] args) throws IOException {

 // nazwy plików XML

 String[] file={"item.xml","chess.xml","contents.xml"};

 try {

 // pobranie ścieżki pliku do przetworzenia

 String xmlResource = "file:\\" + new File(file[2]).getAbsolutePath();

 System.out.println(xmlResource);

 // utworzenie obiektu DocumentBuilderFactory

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

 //sprawdzenie poprawności dokumentu XML

 dbf.setValidating(true);

 //utworzenie obiektu parsera

 DocumentBuilder builder=dbf.newDocumentBuilder();

 //utworzenie własnej obsługi błędów

 ErrorHandler eh=new MyHandler();

 //zarejestrowanie własnej obsługi błędów

 builder.setErrorHandler(eh);

 System.out.println();

 //utworzenie obiektu typu DOM-Document o strukturze drzewa

 Document doc=builder.parse(xmlResource);

 //rekurencyjne wyświetlenie zawartości drzewa

 printTree(doc);

 }

 catch (Exception e) { e.printStackTrace(); }

 System.exit(0);

 }//main()

 public static void printTree(Node node) {

 //...tak jak w programie DOM_JAXP w punkcie 4.6

 }//printTree()

}//class DOM_Valid_DTD

class MyHandler implements ErrorHandler {

 //...tak jak w programie DOM_JAXP w punkcie 4.6

}//class MyHandler

4.7.3. Przetwarzanie względem DTD w modelu JDOM

W tym przypadku wywołujemy metodę setValidating(true) z klasy

fabryki DocumentBuilderFactory.

import java.io.*;

import org.jdom.*;

import org.jdom.input.*;

import org.jdom.output.*;

import org.w3c.dom.*;

import org.xml.sax.*;

import javax.xml.parsers.*;

//--

class JDOM_Valid_DTD {

 public static void main (String[] args)

 throws

IOException,JDOMException,ParserConfigurationException,SAXException

 {

 String xmlFile="";

 // nazwy plików XML

 String[] file={"chess.xml","contents.xml"};

 try {

 // pobranie ścieżki pliku do przetworzenia

 xmlFile = "file:\\" + new File(file[1]).getAbsolutePath();

 System.out.println(xmlFile);

 }

 catch (Exception e) { e.printStackTrace(); }

 System.out.println();

 System.out.println(

 "####### budowanie dokumentu JDOM za pomocą SAXBuilder z pliku XML "

);

 // tworzenie dokumentu JDOM za pomocą SAXBuilder z pliku XML

 saxDocument(xmlFile);

 System.out.println();

 // budowanie dokumentu JDOM za pomocą DOMBuilder z dokumentu DOM

 System.out.println(

 "####### budowanie dokumentu JDOM za pomocą DOMBuilder z dokumentu DOM

"

);

 domDocument(xmlFile);

 System.exit(0);

 }//main()

 public static void saxDocument(String fileName)

 throws IOException,JDOMException

 {

 //utworzenie SAXBuilder ze sprawdzaniem poprawności dokumentu

 SAXBuilder builder=new SAXBuilder(true);

 //utworzenie obiektu typu JDOM Document

 org.jdom.Document doc = builder.build(fileName);

 //wydrukowanie dokumentu wyjściowego w postaci kodu XML

 printDocument(doc);

 }

 public static void domDocument(String fileName)

 throws ParserConfigurationException,SAXException,IOException,JDOMException

 {

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

 //sprawdzenie poprawności względem DTD

 dbf.setValidating(true);

 DocumentBuilder build=dbf.newDocumentBuilder();

 //klasa wewnętrzna lokalna do własnej obsługi błędów

 class MyHandler implements ErrorHandler {

 //ostrzeżenie - niepoprawnosc skladniowa dokumentu,

 //niezgodność z definicjami DTD

 public void warning(SAXParseException e)

 throws SAXException

 {

 System.out.println("***********warning: line="+e.getLineNumber());

 }

 //błąd niekrytyczny - niezgodność ze specyfikacją XML

 public void error(SAXParseException e)

 throws SAXException

 {

 System.out.println("*********error: line="+e.getLineNumber());

 }

 //błąd krytyczny - niepoprawne formatowanie dokumentu

 //zatrzymanie procesu przetwarzania

 public void fatalError(SAXParseException e)

 throws SAXException

 {

 System.out.println("*********fatal error:

line="+e.getLineNumber());

 }

 }//class MyHandler

 ErrorHandler eh=new MyHandler();

 //zarejestrowanie własnej obsługi błędów

 build.setErrorHandler(eh);

 //utworzenie obiektu typu DOM-Document o strukturze drzewa

 org.w3c.dom.Document domDoc = build.parse(fileName);

 //sprawdzanie poprawności dokumentu

 DOMBuilder builder = new DOMBuilder(true);

 //utworzenie obiektu typu JDOM-Document

 org.jdom.Document jdomDoc = builder.build(domDoc);

 //wydrukowanie dokumentu wyjściowego w postaci kodu XML

 printDocument(jdomDoc);

 }//domDocument()

 public static void printDocument(org.jdom.Document doc)throws IOException

 {

 XMLOutputter fmt = new XMLOutputter();

 System.out.println(

"~~"

);

 fmt.output(doc,System.out);

 System.out.println(

"~~"

);

 }//printDocument()

}//class JDOM_Valid_DTD

4.8. Przetwarzanie względem XML Schema

Specyfikacja XML Schema

W przeciwieństwie do dokumentu DTD, który korzysta z ze specyficznego formatu

opisu elementów, XML Schema stosuje format dokumentu XML.

Konstrukcje XML Schema umożliwiają :

 a) określanie przestrzeni nazw dokumentu XML i przestrzeni nazw

schematu

 <xsd:schema targetNamespace=“http://www.java.sun.com/javaxml“

 xmlns:xsd=“http://www.w3.org./2003/XMLSchema“

 xmlns:JavaXML=“http://www.java.sun.com/javaxml“>

 b) określanie elementów i sposobu ich zagnieżdżania

 -----> określanie elementów jawnych (nazwanych)

 <element name=”nazwa elementu” type=”typ elementu” [opcje]>

 w nazwie elementu nie powinno być przedrostka przestrzeni nazw

 "typ elementu" określa typ predefiniowany lub typ zdefiniowany przez

użytkownika

 Typy predefiniowane :

Typ Podtypy Znaczenie

String NMTOKEN,

Language

Łańcuchy znaków

Boolean --- Binarna wartość

Float --- 32 bitowy typ zmiennoprzecinkowy

Double --- 64 bitowy typ zmiennoprzecinkowy

Decimal Integer Zapis dziesiętny

TimeInstant --- Data i czas

TimeDuration --- Czas trwania

RecurringInstant Date,time Czas powtarzający się przez okres timeDuration

Binary --- Dane w postaci binarnej

Uri Enumeration Identyfikator zasobów

Np. <element name=”title” type=”string” />

 Typy zdefiniowane przez użytkownika określamy za pomocą

elementu complexType:

 <complexType name=”[nazwa typu]”>

 <[specyfikacja elementu]>

 <[specyfikacja elementu]>

 ...

 </complexType>

 ---> określanie elementów niejawnych (nienazwanych)

 <complexType>

 ...

 </complexType>

 c) grupowanie elementów, operatory rekurencji (wielokrotne

występowanie, powtórzenia)

 Do określania ile razy ma pojawić się element używa się

atrybutów minOccurs i maxOccurs:

 <element name=”[nazwa]” type=”[typ]” minOccurs=”[ile]”

maxOccurs=”[ile]”>

wartości domyślne minOccurs = 1, maxOccurs= *(zero lub więcej).

 d) definiowanie atrybutów, typu atrybutów i wartości domyślnych

 Atrybuty w XMLSchema definiuje się za pomocą elementu attribute

 <attribute name=”[nazwa atrybutu” type=”[typ atrybutu]” [opcje

atrybutu]>

 Do określania czy dany atrybut ma się pojawić służy minOccurs (wartość

domyślna=0).

 Do określania wartości domyślnej atrybutu służy atrybut default

 Np. <attribute name=”temat” type=”string” default=”java” / >

Wyliczenia możliwych wartości atrybutu dokonujemy za pomocą

elementu simpleType podając jego typ bazowy za pomocą słowa

kluczowego base i elementów enumeration

np .

 <attribute name=”temat” default=”java”>

 <simpleType base=”string”>

 <enumeration value=”xml” />

 <enumeration value=”javaxml” />

 </simple type>

</attribute>

 e) określanie encji

 <!ENTITY [nazwa encji] ”[znaki podstawiane/identyfikator]”>

 Konstrukcja ta jak widać pozwala podać zarówno znaki podstawiane pod nazwę

encji jak i odwołanie do pliku zewnętrznego.W tym ostatnim przypadku trzeba

podać identyfikator URI (np. URL) zasobu.

Przykład dokumentu JavaXML.xsd zawężającego

dokument contents.xml wedlug XML Schema. Czytelnik powinien rozpoznać w

nim konstrukcje charakterystyczne dla XML Schema.

 Dokument JavaXML.xsd

<?xml version="1.0"?>

<schema targetNamespace="http://www.oreilly.com/catalog/javaxml/"

 xmlns="http://www.w3.org/1999/XMLSchema"

 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">

<element name="Book" type="JavaXML:BookType" />

 <complexType name="BookType">

 <element name="Title" type="string" />

 <element name="Contents" type="JavaXML:ContentsType" />

 <element name="Copyright" type="string" />

 </complexType>

 <complexType name="ContentsType">

 <element name="Chapter" maxOccurs="*">

 <complexType>

 <element name="Heading" type="string" minOccurs="0" />

 <element name="Topic" maxOccurs="*">

 <complexType content="string">

 <attribute name="subSections" type="integer" />

 </complexType>

 </element>

 <attribute name="focus" default="Java">

 <simpleType base="string">

 <enumeration value="XML" />

 <enumeration value="Java" />

 </simpleType>

 </attribute>

 </complexType>

 </element>

 <element name="SectionBreak" minOccurs="0" maxOccurs="*">

 <complexType content="empty" />

 </element>

 </complexType>

</schema>

źródło: http://www.oreilly.com/catalog/javaxml

Obecnie dostępny jest w Internecie pakiet JAXP w wersji 1.2 (JAXP1.2) który

obsługuje sprawdzanie poprawności zarówno względem DTD, jak również

względem XMLSchema. Dołączany jest do niego standardowo parser Xerces-J

obsługujący XMLSchema.

Poniższy przykład pokazuje wykorzystanie bibliotek JAXP1.2 do przetwarzania

dokumentu XML ze sprawdzaniem poprawności według DTD lub XMLSchema.

 Poniższy program stosuje biblioteki JAXP1.2 do obliczania ilości elementów w

dokumencie XML:

Program stosujący biblioteki JAXP1.2.Należy uruchomić ten program i sprawdzić

czy wynik jest zgodny z przewidywaniami. Należy następnie dokonać celowych

zmian w dokumencie XML niezgodnych z arkuszem stylów i zaobserwować

reakcję programu. Dla analizy ze sprawdzaniem poprawności względem

XMLSchema program ten należy uruchomić z argumentami: -xsdss personal.xsd

personal-schema.xml pamiętając o umieszczeniu na ścieżce klas parsera Xerces-J

obsługującego JAXP1.2.

//klasy JAXP

import javax.xml.parsers.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

import java.util.*;

import java.io.*;

public class SAXLocalNameCount extends DefaultHandler {

 //stałe używane przez JAXP 1.2

 static final String JAXP_SCHEMA_LANGUAGE =

 "http://java.sun.com/xml/jaxp/properties/schemaLanguage";

 static final String W3C_XML_SCHEMA =

 "http://www.w3.org/2001/XMLSchema";

 static final String JAXP_SCHEMA_SOURCE =

 "http://java.sun.com/xml/jaxp/properties/schemaSource";

 //tablica mieszania z parami (nazwa znacznika,liczba wystąpień)

 private Hashtable tags;

 //na poczatku dokumentu tworzymy obiekt HashTable

 public void startDocument() throws SAXException {

 tags = new Hashtable();

 }

 // po napotkaniu nowego elementu pobieramy jego nazwę i sprawdzamy

 // czy już występuje w tablicy jeżeli nie to dodajemy do mapy;

 // jeżeli już występuje to dodajemy do mapy z aktualnym licznikiem

 public void startElement(

 String namespaceURI, String localName,String qName, Attributes atts

)

 throws SAXException {

 String key = localName;

 Object value = tags.get(key);

 if (value == null) {

 // dodajemy nową parę

 tags.put(key, new Integer(1));

 }

 else {

 // pobieramy wartość licznika,zwiekszamy o 1 i dodajemy do mapy

 int count = ((Integer)value).intValue();

 count++;

 tags.put(key, new Integer(count));

 }

 }

 // na końcu dokumentu uzyskujemy iterator kluczy

 // i drukujemy nazwy znaczników i liczby ich wystąpień

 public void endDocument() throws SAXException {

 Enumeration e = tags.keys();

 while (e.hasMoreElements()) {

 String tag = (String)e.nextElement();

 int count = ((Integer)tags.get(tag)).intValue();

 System.out.println("Local Name \"" + tag + "\" occurs " + count

 + " times");

 }

 }

 //nazwę pliku zamieniamy na adres URL pliku

 private static String convertToFileURL(String filename) {

 String path = new File(filename).toURL().toString();

 return "file:" + path;

 }

 // w przypadku błędnych argumentów

 // informacja o parametrach wywołania programu z linii komend

 private static void usage() {

 System.err.println("Usage: SAXLocalNameCount [-options] <file.xml>");

 System.err.println(" -dtd = DTD validation");

 System.err.println(

 " -xsd | -xsdss <file.xsd> = W3C XML Schema validation using xsi:

hints");

 System.err.println(" in instance document or schema source

<file.xsd>");

 System.err.println(

 " -xsdss <file> = W3C XML Schema validation using schema source

<file>");

 System.err.println(" -usage or -help = this message");

 System.exit(1);

 }

 static public void main(String[] args) throws Exception {

 String filename = null;

 boolean dtdValidate = false; //czy poprawność według DTD

 boolean xsdValidate = false; //czy poprawność według informacji w

dokumencie XML

 String schemaSource = null; //czy poprawność według podanego

arkusza XML Schema

 // analiza argumentów wywołania

 for (int i = 0; i < args.length; i++) {

 if (args[i].equals("-dtd")) dtdValidate = true;

 else if (args[i].equals("-xsd")) xsdValidate = true;

 else if (args[i].equals("-xsdss")) {

 if (i == args.length - 1) usage();

 xsdValidate = true;

 schemaSource = args[++i];

 }

 else if (args[i].equals("-usage")) usage();

 else if (args[i].equals("-help")) usage();

 else {

 filename = args[i];

 if (i != args.length - 1) usage();

 }

 }//for

 if (filename == null) usage();

 // utworzenie fabryki JAXP SAXParserFactory

 SAXParserFactory spf = SAXParserFactory.newInstance();

 // włączenie rozpoznawania przestrzeni nazw.

 spf.setNamespaceAware(true);

 // ustawienie sprawdzania poprawności

 spf.setValidating(dtdValidate || xsdValidate);

 // utworzenie parsera SAX

 SAXParser saxParser = spf.newSAXParser();

 System.out.println("parser="+saxParser);

 // ustawienie języka schematu

 if (xsdValidate) {

 try {

 saxParser.setProperty(JAXP_SCHEMA_LANGUAGE,

W3C_XML_SCHEMA);

 }

 catch (SAXNotRecognizedException x) {

 // jeżeli parser nie obsługuje JAXP1.2

 System.err.println(

 "Error: JAXP SAXParser property not recognized: "+

JAXP_SCHEMA_LANGUAGE

);

 System.err.println("Check to see if parser conforms to JAXP

1.2 spec.");

 System.exit(1);

 }

 }

 //ustawienie właściwości dla źródła schematu

 if (schemaSource != null) {

 saxParser.setProperty(JAXP_SCHEMA_SOURCE, new

File(schemaSource));

 }

 // uzyskanie obiektu XMLReader

 XMLReader xmlReader = saxParser.getXMLReader();

 // zarejestrowanie obsługi zawartości

 xmlReader.setContentHandler(new SAXLocalNameCount());

 // zarejestrowanie obsługi błędów z wydrukiem na konsolę

 xmlReader.setErrorHandler(new MyErrorHandler(System.err));

 // dokonanie analizy dokumentu XML

 xmlReader.parse(convertToFileURL(filename));

 }

 // definicja obsługi błędów i ostrzeżeń

 private static class MyErrorHandler implements ErrorHandler {

 //informacje o błędach zapisywane do strumienia

 private PrintStream out;

 MyErrorHandler(PrintStream out) {

 this.out = out;

 }

 //dostarcza informacji o wyjatkach w procesie parsowania

 private String getParseExceptionInfo(SAXParseException spe) {

 String systemId = spe.getSystemId();

 if (systemId == null) systemId = "null";

 String info = "URI=" + systemId +

 " Line=" + spe.getLineNumber() +

 ": " + spe.getMessage();

 return info;

 }

 // standardowe metody obsługi błędów

 public void warning(SAXParseException spe) throws SAXException {

 out.println("Warning: " + getParseExceptionInfo(spe));

 }

 public void error(SAXParseException spe) throws SAXException {

 String message = "Error: " + getParseExceptionInfo(spe);

 throw new SAXException(message);

 }

 public void fatalError(SAXParseException spe) throws SAXException {

 String message = "Fatal Error: " + getParseExceptionInfo(spe);

 throw new SAXException(message);

 }

 }

}

źródło - Apache Software Foundation (http://www.apache.org/)

4.9. Transformacje XSLT

Transformacja XSLT (XSL Transformation) była zdefiniowana przez W3C XSL

Working Group.

XSL (Extensible Stylesheet Language) służy do przekształcenia danych XML z

jednego formatu na inny za pomocą arkuszy stylów, które muszą być uprzednio

przygotowane. Dokument XSL jest dokumentem w formacie XML

wykorzystującym konstrukcje XPath oraz obiekty formatujące w postaci

specjalnych znaczników używanych przez procesor XSLT do zmiany formatu

danych.

Procesor XSLT, wykorzystując arkusz stylów oraz dokument XML w postaci

drzewa, tworzy dokument w nowym formacie np. HTML.

Jako argumenty dla procesora XSLT podaje się dokument XML z odwołaniem do

arkusza stylów, arkusz stylów XSL oraz plik w którym ma być umieszczony wynik

transformacji.

Xpath (XML Path Language) określa w jaki sposób zlokalizować określony

komponent dokumentu XML.

Z punktu widzenia Xpath dokument XML stanowi strukturę drzewiastą . W

węzłach tego drzewa znajduje się określone komponenty XML : elementy,

atrybuty, dane tekstowe. W celu zlokalizowania określonego komponentu XML

stosuje się odwołania do węzłów drzewa XML poprzez określenie położenia

danego węzła w drzewie.

Transformacje XSLT umożliwiają w Javie pakiety javax.xml.transform,

javax.xml.transform.sax,javax.xml.transform.dom,

javax.xml.transform.stream.

Interfejsy i klasy pakietu javax.xml.transform

Pakiet dostarcza interfejsy i klasy do przetwarzania instrukcji

transformacyjnych XSL i dokonywania transformacji XSLT.

Typ Nazwa Opis

Interfejsy

ErrorListener Nasłuch ostrzeżeń i błędów

przetwarzania

Result Uzyskiwanie Informacji

potrzebnych do zbudowania

wynikowego drzewa transformacji

Source Uzyskiwanie informacji

potrzebnych do działania jako

źródła transformacji (dokumentu

XML lub instrukcji

transformacyjnych)

SourceLocator Uzyskiwanie Informacji o

występowaniu błędów w źródle

transformacji

Templates Reprezentacja przetwarzanych

instrukcji transformacyjnych

URIResolver Rozpoznawanie identyfikatorów

URI w instrukcjach

transformacyjnych

Klasy

OutputKeys Zawiera stałe łańcuchowe

potrzebne do ustalania lub

pobierania właściwości obiektu

typu Transformer lub Template

Transformer Przetwarzanie drzewa źródłowego

w drzewo wynikowe

TransformerFactory Fabryka do tworzenia instancji

klasy Transformer

Klasy

Wyjątków

TransformerConfigurationException Nie można utworzyć instancji

klasy Transformer np. z powodu

błędów składniowych instrukcji

TransformerException Ogólny błąd transformacji;

informacje o błędzie poprzez

wywołanie

getMessageAndLocation()

TransformerFactoryConfigurationError Błąd konfiguracji instancji

TransformerFactory; klasa fabryki

transformacji nie znaleziona lub

nie można utworzyć jej

egzemplarza

 Interfejsy i klasy pakietu javax.xml.transform.sax

Zawiera API specyficzne dla transformacji w modelu SAX2

Typ Nazwa Opis

Interfejsy TemplatesHandler Tworzenie obiektów typu Templates w oparciu

o zdarzenia SAX2

TransformerHandler Tworzenie transformacji w oparciu o zdarzenia

SAX2

Klasy SAXResult Pozwala na ustalenie obiektu ContentHandler

dla zdarzeń SAX2 pochodzących z procesu

transformacji

SAXSource Ustalenie obiektu XMLReader i InputSource

SAXTransformerFactory rozszerza TransformerFactory, dostarczając

metod do tworzenia instancji

TemplatesHandler, TransformerHandler,

XMLReader

Interfejsy i klasy pakietu javax.xml.transform.dom

Zawiera API specyficzne dla transformacji w modelu DOM:

Typ Nazwa Opis

Interfejs DOMLocator Wskazuje pozycję węzła w strukturze DOM; raport

błędów

Klasy DOMResult Określa drzewo wyjściowe jako obiekt typu Node

DOMSource Określa drzewo wejściowe jako obiekt typu Node

Klasy pakietu javax.xml.transform.stream

Typ Nazwa Opis

klasy StreamResult przechowuje wynik transformacji w odpowiednim

formacie (np.XML,HTML)

StreamSource przechowuje źródło transformacji jako strumień

znaczników XML

import java.io.*;

import org.w3c.dom.*;

import org.xml.sax.*;

import javax.xml.parsers.*;

//importy pakietów XSLT

import javax.xml.transform.*;

import javax.xml.transform.sax.*;

import javax.xml.transform.dom.*;

import javax.xml.transform.stream.*;

//--

public class XSLT {

 public static void main (String args []) throws IOException {

 int index = 1;

 index = Integer.parseInt(args[0]);

 // nazwy plików XML,XSL,HTML

 String[] xmlFile = {"contents.xml","contents.xml" ,"contents.xml"};

 String[] xslFile = {"contents.xsl","contentsA.xsl" ,"contentsB.xsl"};

 String[] htmlFile =

{"contents.html","contentsA.html","contentsB.html"};

 try {

 // utworzenie obiektu TransformerFactory

 TransformerFactory tf = TransformerFactory.newInstance();

 //uzyskanie procesora XSLT

 Transformer transformer = tf.newTransformer(

 new SAXSource(new InputSource(xslFile[index])));

 //utworzenie strumienia wysciowego dla wyniku transformacji

 OutputStream out = new FileOutputStream(htmlFile[index]);

 //dokonanie transformacji

 transformer.transform(

 new SAXSource(new InputSource(xmlFile[index])),new

StreamResult(out)

);

 System.out.println();

 }

 catch (Exception e) { e.printStackTrace(); }

 System.exit(0);

 }//main()

}//class XSLT

Jak widać zastosowanie interfejsów do transformacji XSLT jest bardzo proste.

Cała trudność polega na przygotowaniu arkuszy XSL opisujących na czym ma

polegać transformacja (zmiana formatu) dokumentu XML. Omówimy zatem

podstawy tworzenia takich arkuszy.

4.9.1. Zastosowanie języka Xpath

XPath stanowi samodzielną specyfikację którą można znaleźć na stronie

http://www.w3org/TR/xpath.

Jej pełny opis w tym wykładzie jest niemożliwy więc zaznaczone będą tylko

główne zasady posługiwania się tym językiem.

Jak już wspomniano Xpath służy do odwołania się do poszczególnych elementów i

ich atrybutów dokumentu XML.

Odwołania te są czynione przy użyciu adresów względnych (względem elementu

bieżącego) lub absolutnych w postaci ścieżki dostępu do danego węzła (i jego

potomków) i ewentualnie jego atrybutu. Przy przetwarzaniu

wyrażenia XPath zwracany jest zestaw węzłów, który może być poddany różnym

operacjom m.in. przekształceniu na inny format.

Oprócz samego wyboru węzłów XPath udostępnia funkcje operujące na zestawach

węzłów t.j. not() i count().

Funkcje te omówione zostaną w zastosowaniu razem z konstrukcjami

arkusza XSL.

4.9.2. Tworzenie arkusza stylów w języku XSL (XML Stylesheet Language)

Rozszerzalny język arkuszy stylów (informacje o XSL można uzyskać na stronie

http://www.w3.org/Style/XSL) służy do tworzenia arkuszy stylów. Składa się ze

zbioru słów w formacie XML służących do formatowania dokumentu XML.

Główne jego składniki to:

- szablony XSL

 - filtry

 - instrukcje iteracji (pętle)

 - instrukcje wyboru

 Szablony XSL

mają ogólną postać:

 <xsl:template match="[wyrażenie

XPath]">

 <!-- tu wstawiamy sposób

formatowania -->

 </xsl:template>

nazwa template oznacza szablon a atrybut match oznacza dopasowanie do

sposobu formatowania elementu którego ścieżkę podano w wyrażeniu XPath.

Jako dokument XML który posłuży do zaprezentowania konstrukcji XSL

wybierzmy plik contents.html zawierający spis treści książki "Java and

XML" (autor: Brett MacLaughlin)

Jeżeli teraz w arkuszu XSL umieścimy szablon

<xsl:template match="Java:Book">

 Hello XML!

</xsl:template>

to ponieważ element Java:Book jest elementem głównym to do szablonu zastanie

zwrócona cała hierarchia elementów dokumentu XML.Procesor XSLT przetwarza

tę hierarchię elementów i po napotkaniu każdego węzła dodaje dane do strumienia

wyjściowego transformacji. Jeżeli dla danego elementu nie podano szablonu dane

wynikowe nie będą nic zawierały

W tym przypadku wynikowy dokument transformacji zawierać będzie napis Hello

XML!.

Jeżeli chcielibyśmy żeby procesor dopasował wszystkie elementy podrzędne

elementu bieżącego za pomocą wszystkich szablonów w arkuszu to trzeba użyć

konstrukcji <xsl:apply-templates> ...</xsl:apply-templates>

Następujący arkusz przekształca dokument XML do formatu HTML i w jego ciele

umieszcza dane ze wszystkich elementów XML.

<?xml version="1.0" encoding="ISO-8859-2"?>

<xsl:stylesheet xmlns:xsl="http://www.w3c.org/2000/xsl/transform"

"http://www.oreily.com/catalog/java.xml" version="1.0">

<xsl:template match="Java:Book">

 <html>

 <head><title>Java Book Html</title></head>

 <body>

 <xsl:apply-templates />

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>>

Wynikowy dokument HTML ma postać:

<html xmlns:JavaXML="http://www.oreily.com./catalog/javaxml" >

<head><title>Java Book Html</title></head>

<body>

 Java and XML

 Introduction

 What is it?

 How Do I Use It?

 Why should I Use It?

 Creating XML

 An XML Document

 The Header

 The Content What's next?

<!-- pozostałe rozdziały -->

</body>

</html>

Po tym przykładzie powstaje pytanie jak dopasowywać indywidualnie elementy

XML.

Służy do tego konstrukcja <xsl:value-of select="[sciezka XPath]">

Zatem żeby w poprzednim przykładzie znacznik html <title> zawierał dane z

elementu <JavaXML:Title>

trzeba użyć szablonu:

<xsl:template match="JavaXML:Book">

<html>

 <head>

<title><> <xsl:value-of select="JavaXML:Title" /> </title>

 </head>

 <body>

 <xsl:apply-templates />

 </body>

 </html>

</xsl:template>

Istotne w tym przykładzie jest to że mimo że wartość

elementu JavaXML:Title została wstawiona do znacznika html <title> to element

ten nie został usunięty z hierarchii elementów dostępnych w szablonie. Zatem

wartość tego elementu pojawi się w tytule dokumentu html jak również w jego

ciele tak jak w poprzednim przykładzie.

Wynika to z ogólnej zasady że dane wejściowe procesora XSLT są niezmienne-

można najwyżej coś do nich dodać i dokonać przekształcenia formatu.

 Filtry

Często zachodzi potrzeba wyłączenia z przekształcania pewnych węzłów struktury

drzewiastej dokumentu XML.

W takim przypadku najwygodniej jest wykorzystać funkcję XPath o nazwie not().

Jeżeli w poprzednim przykładzie chcielibyśmy wyłączyć z przetwarzania

element JavaXML:Title zagnieżdżony w elemencie bieżącym Java:Book to

odpowiedni szablon powinien wyglądać następująco:

<xsl:template match="JavaXML:Book">

<html>

 <head>

<title><> <xsl:value-of select="JavaXML:Title" /> </title>

 </head>

 <body>

 <xsl:apply-templates select="*[not(self::JavaXML:Title)]">

 </body>

 </html>

</xsl:template>

Słowo self oznacza w tym przypadku że węzły występujące po tym słowie są

potomne względem węzła bieżącego.

 Instrukcje iteracyjne (pętle)

mają postać <xsl:for-each select="[wyrażenie XPath]">...</xsl:for-

each> i służą do iteracji po danych w ramach jednego typu elementu ;

np. w elemencie <Java:XML:Contents> chcemy wydrukować tytuły rozdziałów-

dane elementów < JavaXML : Heading >

Wówczas nasz szablon który formatuje wydruk w postaci html mógłby wyglądać

tak:

<xsl:template match="JavaXML:Contents">

<h1>Contents</h1>

 <xsl:for-each select="JavaXML:Chapter">

 <xsl:value-of select="JavaXML:Heading" />

<xsl:for-each>

</xsl:template>

 Instrukcje wyboru

pozwalają przetwarzać tylko te węzły które spełniają pewne kryteria wyboru.

Podstawową konstrukcją iteracyjną jest <xsl:if test="[wyrażenie

logiczne]">...<xsl:if>

Jeżeli wynikiem testu jest prawda to element <xsl:if > będzie obliczany w

przeciwnym razie nie.

Jeżeli zatem w poprzednim przykładzie chcemy wypisać tylko te rozdziały których

atrybut focus ma wartość XML, możemy to uzyskać w następujący sposób:

 <xsl:template match="JavaXML:Contents">

 <h1>Contents</h1>

 <xsl:for-each select="JavaXML:Chapter">

 <xsl:if test="@focus='XML' ">

 <xsl:value-of select="JavaXML:Heading" />

 <xsl:if>

 <xsl:for-each>

 </xsl:template>

Następną pożyteczną konstrukcją jest konstrukcja złożona <xsl:choose>...

</xsl:choose> o postaci:

<xsl:choose>

 <xsl:when test="[wyrażenie logiczne]">...</xsl:when>

 <xsl:otherwise>...</xsl:otherwise>

 </xsl:choose>

Pozwala ona na dokonanie testu warunku <xsl:when test=..>.i wykonanie jednej

operacji jeżeli jest spełniony i innej operacji jeżeli warunek nie jest

spełniony <xsl:otherwise>....

Ostatni szablon zmodyfikujemy w ten sposób żeby wypisywał nazwę elementu i w

zależności od niej tematykę.

<xsl:template match="JavaXML:Contents">

 <h1>Contents</h1>

 <xsl:for-each select ="JavaXML:Chapter">

 <xsl:choose>

 <xsl:when test ="@focus ='Java' ">

 <xsl:value-of select ="JavaXML:Heading" />(focus:Java)

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="JavaXML:Heading" />(focus:XML)

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

</xsl:template>

Dodatkową możliwością w XML jest konstrukcja <xsl:copy-of

select="[wyrażenie XPath]"> która przekazuje zestaw węzłów bezpośrednio na

wyście procesora XSLT. Zestaw węzłów nie jest wówczas przetwarzany.

Na zakończenie tego krótkiego wprowadzenia w arkusze XSL warto zaznaczyć, że

daje on również możliwość definiowania własnych węzłów i atrybutów poprzez

konstrukcje:

<xsl:element name="nazwa elementu">...</xsl:element>

<xsl:attribute name="nazwa atrybutu">...</xsl:attribute>

Mogą one stanowić elementy pomocnicze w procesie przetwarzania lub mogą być

dodane do danych wyjściowych.

Przykład arkusza stylów dla pliku contents.xml.

Należy znaleźć w tym dokumencie omawiane wyżej konstrukcje XPath i XSL.

Dokument contents.xsl

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"

 version="1.0">

 <xsl:template match="JavaXML:Book">

 <html>

 <head>

 <title><xsl:value-of select="JavaXML:Title" /></title>

 </head>

 <body>

 <xsl:apply-templates select="*[not(self::JavaXML:Title)]" />

 </body>

 </html>

 </xsl:template>

 <xsl:template match="JavaXML:Contents">

 <center>

 <h2>Table of Contents</h2>

 </center>

 <hr />

 <xsl:for-each select="JavaXML:Chapter">

 <xsl:choose>

 <xsl:when test="@focus='Java'">

 <xsl:value-of select="JavaXML:Heading" /> (Java Focus)

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="JavaXML:Heading" /> (XML Focus)

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </xsl:template>

 <xsl:template match="JavaXML:References">

 <p>

 <center><h3>Useful References</h3></center>

 <xsl:for-each select="JavaXML:Reference">

 <xsl:element name="a">

 <xsl:attribute name="href">

 <xsl:value-of select="JavaXML:Url" />

 </xsl:attribute>

 <xsl:value-of select="JavaXML:Name" />

 </xsl:element>

 </xsl:for-each>

 </p>

 </xsl:template>

 <xsl:template match="JavaXML:Copyright">

 <xsl:copy-of select="*" />

 </xsl:template>

</xsl:stylesheet>

źródło: http://www.oreilly.com/catalog/javaxml

4.10. Zaawansowane zastosowania dokumentów XML

4.10.1. Struktura publikacji WWW(publishing framework)

Termin ten nie ma formalnej definicji, ale jest w większości przypadków jest

interpretowany jako zestaw narzędzi XML wykonujących przetwarzanie,

przekształcanie oraz inne operacje na dokumentach XML w ramach danej

aplikacji. działającej zazwyczaj po stronie serwera obsługującego mechanizm

serwletów. Struktura publikacji odpowiada na żądanie pobrania publikowanej

wersji pliku (published file) np. w formacie HTML lub PDF. Plik publikowany

powstaje dynamicznie z pliku XML na skutek zastosowania transformacji XSLT

lub jest wynikiem przekształcenia pliku z innego formatu.

Do najbardziej znanych struktur publikacji należą :

Apache Cocoon: http://xml.apache.org

Ehydra Application Server: http://www.enhydra.org

Bluestone XML Server: http://www.bluestone.com/xml

SAXON: http://users.iclway.co.uk/mhkay/saxon

Szczególną pozycję ze względu na stabilność i integrację z narzędziamy XML

zajmuje struktura Apache Cocoon.

Domyślnie obsługuje ona Apache Xerces i Apache Xalan, pozwala na

wykorzystanie dowolnego parsera XML. Wykorzystuje również strukturę

serwletów Javy.

Po pobraniu i zainstalowaniu Apache Cocoon trzeba zainstalować serwer

obsługujący mechanizm serwletów (np. Jakarta Tomcat)a następnie skonfigurować

ten mechanizm podając ścieżki dostępu do bibliotek Cocoon oraz do pliku

właściwości Coccoon.

Generalnie instalacja struktury aplikacji jest dość złożona więc warto posłużyć się

pomocą online znajdującą się pod adresami:

http://xml.apache.org/
http://www.enhydra.org/
http://www.bluestone.com/xml
http://users.iclway.co.uk/mhkay/saxon

 http://xml.apache.org, http://xml.apache.org./cocoon/faqs.html.

Po zainstalowaniu i skojarzeniu struktury publikacji z serwerem korzystanie ze

struktury publikacji polega na użyciu przeglądarki WWW i wpisywaniu adresów

URL odpowiednich plików XML.

Interesującą cechą Apache Cocoon jest możliwość wykorzystania technologii

łączności bezprzewodowej. Odpowiednie wpisy w pliku właściwości Cocoon

pozwalają wykryć klienta bezprzewodowego (telefon komórkowy z dostępem do

Internetu) i wysłanie odpowiedzi odpowiedniej dla urządzenia WAP (umieszczonej

w znacznikach <wml>...</wml>).

4.10.2. Rozszerzalne strony serwera XSP(Extensible Server Pages)

Rozszerzalne strony XSP powstały na gruncie rozwijania struktury publikacji

Strony XSP to dokumenty w formacie XML, które stanowią rozwiązanie

problemów JSP, które nie zostały do końca rozwiązane, a mianowicie

rozdzieleniem zawartości i prezentacji oraz zmianą formatu JSP oraz użycia JSP do

komunikacji między aplikacjami.

Na stronach XSP można używać także logiki biznesowej wykorzystując

komponenty Javy dostępne po stronie serwera (np. Enterprise Java Beans).

Generalnie strony XSP są bardziej elastyczne i uniwersalne niż strony JSP.

Przykład prostej strony XSP wyliczającej ile razy została ona pobrana :

<?xml version="1.0"?>

<?cocoon-process type="xsp"?>

<?cocoon-process type="xslt"?>

<?xml-stylesheet href="myStylesheet.xsl" type="text/xsl"?>

<xsp:page language="java" xmlns:xsp="http://www.apache.org/1999/XSP/Core">

 <xsp:logic>

 private static int numHits = 0;

 private synchronized int getNumHits() {

 return ++numHits;

http://xml.apache.org/
http://xml.apache.org./cocoon/faqs.html

 }

 </xsp:logic>

 <page>

 <title>Hit Counter</title>

 <p>I've been requested <xsp:expr>NumHits()</xsp:expr> times.</p>

 </page>

</xsp:page>

 źródło: http://www.oreilly.com/catalog/javaxml

W znaczniku <xsp:logic> zawarta jest logika aplikacji-obliczanie ile razy dana

strona została pobrana.

Ponieważ jest to dokument XML i jako taki może zostać poddany przetworzeniu w

modelu SAX lub DOM, jak również poddany transformacji XSLT zgodnie z

określonym arkuszem stylów XSL i w ten sposób oddzieleniu zawartości od

prezentacji.

Jeden programista może zatem generować treść statycznie albo dynamicznie przy

użyciu serwletu lub innej aplikacji Javy, drugi zaś może zmieniać sposób

prezentacji poprzez modyfikację arkusza stylów XSL.

4.10.3. XML-RPC (XML-Remote Procedure Call)

W technologii RPC serwer definiuje usługę jako zestaw procedur, które klient

może wywoływać chcąc uzyskać dostęp do tej usługi.

Za pomocą tej technologii możliwe jest wywoływanie procedur przez sieć i

otrzymywania odpowiedzi też przez sieć bez bezpośredniego komunikowania się z

obiektem zdalnym oferującym usługę.

W Javie ta technologia przestała być używana od momentu powstania technologii

RMI, w której klient uzyskując referencję do zdalnego obiektu zarejestrowanego i

wyeksportowanego po stronie serwera, wywołuje jego metody i otrzymuje wyniki

tych wywołań. Klient RMI uzyskuje komunikację za pośrednictwem namiastek (po

stronie klienta) i szkieletów (po stronie serwera) ładowanych przez sieć.

Największy problem w technologii RPC związany był z kodowaniem i

odkodowywaniem przesyłanych danych o złożonej strukturze - pojawienie się

standardu XML zmieniło radykalnie tę sytuację. Technologia XML

pozwoliła przywrócić znaczenie technologii RPC dzięki reprezentowaniu

dowolnych danych oraz ich struktury za pomocą dokumentów tekstowych w

standardzie XML.

W konsekwencji wysyłanie i odbieranie danych tekstowych za pomocą

mechanizmu XML-RPC w pewnych sytuacjach jest wydajniejsze niż technologia

RMI.

Informacje o XML-RPC uzyskać można na stronie http://www.xml-

rpc.com , natomiast pakiet API Javy dla XML-RPC można uzyskać ze

strony http://helma.at/hannes/xmlrpc.

Pakiet ten o nazwie helma.xmlrpc zawiera m.inn.klasy XmlRpc, XmlRpcClient,

XmlRpcServer, XmlRpcHandler służące do tworzenia klienta i serwera XML-RPC

oraz do kodowania i przetwarzania przesyłanych danych . Klasa WebSerwer

opisuje prosty serwer HTTP do obsługi żądań klienta XML-RPC.

W komunikacji XML-RPC kluczową rolę odgrywają dwie procedury obsługi:

 - procedura obsługi żądania

 - procedura obsługi odpowiedzi

Procedura obsługi żądania zawarta jest w bibliotekach XML-RPC w klasie

helma.xmlrpc.XmlRpcServer, zatem programista musi zdefiniować tylko procedurę

obsługi odpowiedzi, która musi być zarejestrowana w serwerze.

W sygnaturze tej metody mogą wystąpić typy zmiennych obsługiwane przez XML-

RPC.

Typy te i ich odpowiedniki w Javie zawiera poniższa tabela:

Typy XML-RPC Typy Javy

int int

boolean boolean

string java.lang.String

double double

dateTime.iso8601 java.util.Date

struct java.util.HashTable

array java.util.Vector

base64 byte[]

Przy pisaniu aplikacji klient-serwer XML-RPC uwzględnić trzeba następujące

etapy:

- zdefiniowanie klasy a w niej metody, która ma być uruchomiona zdalnie

(klasa procedury obsługi odpowiedzi)

- ustalenie parsera SAX do przetwarzania i kodowania XML po stronie

serwera

- utworzenie serwera XML-RPC

- zarejestrowanie klasy procedury obsługi

- ustalenie parsera SAX do przetwarzania i kodowania XML po stronie klienta

- utworzenie klienta

- wywołanie procedury obsługi

W ramach prostego przykładu rozpatrzmy aplikację typu klient - server XML-RPC,

która wywołuje zdalnie metodę sayHello(). Metoda ta pobiera argument text typu

String i zwraca łańcuch "Hello "+text.

Definicja klasy procedury obsługi odpowiedzi i metody wywoływanej zdalnie:

 public class HelloHandler {

 public String sayHello(String text) {

 return "Hello"+text;

 }

 }

 źródło: http://www.oreilly.com/catalog/javaxml

Przykładowy serwer XML-RPC rejestrujący powyższą klasę z procedurą obsługi:

import java.io.IOException

import helma.xml.rpc.XmlRpc;

import helma.xmlrpc.WebSerwer;

class ServerHello {

 public static void main (String[] args){

 //numer poru serwera z linii komend

 if(args.length<1){

 System.out.println("Port number missing");

 System.exit(-1);

 }

 try {

 //ustalenie parsera Apache Xerces SAX

 XmlRpc.setDriver()("org.apache.xerces.parsers.SAXParser")

 //utworzenie serwera HTTP

 WebServer server = new WebServer(Integer.parseInt(args[0]);

 //rejestracja klasy procedury obsługi,której nadano nazwę "hello"

 server.addHandler("hello",new HelloHandler());

 }

 catch(ClassNotFoundException e) {

 System.out.println("Nie odnaleziono klasy parsera SAX");

 }

 catch (IOException e) {

 System.out.println(e.getMessage());

 }

 } //main()

} //class SerwerHello

źródło: http://www.oreilly.com/catalog/javaxml

Przykład klasy klienta wywołującego zdalnie zarejestrowaną metodę :

//import bibliotek

import java.io.IOException;

import java.net.MalformedURLException;

import java.util.Vector;

import helma.xmlrpc.XmlRpc;

import helma.xmlrpc.XmlRpcClient;

import helma.xmlrpc.XmlRpcException;

public class ClientHello {

 public static void main(String args[]) {

 //tekst do wysłania z linii komend

 if (args.length < 1) {

 System.out.println("Text missing");

 System.exit(-1);

 }

 try {

 // ustalenie parsera SAX:Apache Xerces

 XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

 // utworzenie klienta;serwer na porcie lokalnym

 XmlRpcClient client =

new XmlRpcClient("http://localhost:8080/");

 // utworzenie żądania

 Vector params = new Vector();

 params.addElement(args[0]);

 // wysłanie żądania

 String result

=(String)client.execute("hello.sayHello",params);

 //wydrukowanie odpowiedzi

 System.out.println("Response from server:" + result); }

 catch (ClassNotFoundException e) {

 System.out.println("Could not locate SAX Driver");

 }

 catch (MalformedURLException e) {

 System.out.println("Incorrect URL for XML-RPC server format: " +

e.getMessage());

 }

 catch (XmlRpcException e) {

 System.out.println("XML-RPC Exception:" + e.getMessage());

 }

 catch (IOException e) {

 System.out.println("IO Exception: " + e.getMessage());

 }

 } //main()

} //class ClientHello

źródło: http://www.oreilly.com/catalog/javaxml

W powyższej aplikacji nie widać jawnego użycia formatu XML-odbywa sie to

niejawnie. Wysłane żądanie zostało przetłumaczone na wywołanie HTTP w którym

dane związane z metodą zdalną występują w formacie XML , a wynik wykonania

metody kodowany jest też do formatu XML. Żądanie i odpowiedź prezentuje

poniższa tabela:

Żądanie Odpowiedź

POST /RPC2 HTTP/1.1

User-Agent:Tomcat Web Server/3.1 Beta (Sun

Solaris 2.6)

Host: new Instance.com

Content-Type: text/xml

Content-length: 234

<?xml version="1.0"?>

HTTP/1.1 200 OK

Connection: close

Content-Type: text/xml

Content-length: 149

<?xml version="1.0"?>

<methodResponse>

<methodCall>

 <methodName>hello.sayHello</methodName>

 <params>

 <param>

 <value><string>XML</string></value>

 </param>

 </params>

</methodCall>

 <params>

 <param>

 <value><string>Hello

XML</string></value>

 </param>

 </params>

</methodResponse>

 źródło: http://www.oreilly.com/catalog/javaxml

 4.10.4. XML w plikach konfiguracji serwerów

Standard XML ma również zastosowanie w serwerach aplikacji.

Przykładem może być Enterprise JavaBean, której specyfikacja wymaga żeby

pliki deskryptorów wdrożeń oparte były o XML

Innym przykładem jest wykorzystanie XML w konfiguracji całego mechanizmu

serwletów jak również w konfiguracji indywidualnych serwletów.

Jako prosty przykład wykorzystania XML w plikach konfiguracyjnych podamy

plik konfiguracyjny dla klienta i serwera dla omówionej powyżej aplikacji klient

serwer XML-RPC.

W pliku takim powinny być zawarte informacje dotyczące:

• serwera: port serwera, klasa parsera od strony serwera, procedury obsługi

(identyfikator klasy i nazwa klasy)

• klienta: nazwa hosta na którym zainstalowano serwer, port serwera, klasa

parsera od strony klienta

Dodatkowo plik konfiguracyjny powinien zostać zawężony zgodnie z definicją

DTD, tak aby był rozumiany przez każdy serwer.

Przykład pliku konfiguracyjnego i jego zawężenia:

Plik konfiguracyjny klienta i serwera Plik DTD do którego odwołuje się plik

konfiguracyjny
<?xml version="1.0"?>

<!DOCTYPE JavaXML:xmlrpc-config

SYSTEM "DTD/XmlRpc.dtd">

 <JavaXML:xmlrpc-config xmlns:JavaXML=

"http://www.oreilly.com/catalog/javaxml/" >

 <!-- Configuration Information for Server and

Clients -->

 <JavaXML:hostname>localhost</JavaXML:hos

tname>

 <JavaXML:port

type="unprotected">8585</JavaXML:port>

 <JavaXML:parserClass>

 org.apache.xerces.parsers.SAXParser

 </JavaXML:parserClass>

 <!-- Server Specific Configuration Information -

->

 <JavaXML:xmlrpc-server>

 <!-- List of XML-RPC handlers to register -->

 <JavaXML:handlers>

 <JavaXML:handler>

 <JavaXML:identifier>hello</JavaXML:ide

ntifier>

 <JavaXML:class>HelloHandler</JavaXM

L:class>

 </JavaXML:handler>

 </JavaXML:handlers>

 </JavaXML:xmlrpc-server>

 </JavaXML:xmlrpc-config>

<!ELEMENT JavaXML:xmlrpc-config

(JavaXML:hostname, JavaXML:port,

JavaXML:parserClass, JavaXML:xmlrpc-server)>

 <!ATTLIST JavaXML:xmlrpc-config xmlns:JavaXML

CDATA #REQUIRED >

<!ELEMENT JavaXML:hostname (#PCDATA)>

<!ELEMENT JavaXML:port (#PCDATA)>

<!ATTLIST JavaXML:port type (protected|unprotected)

"unprotected" >

<!ELEMENT JavaXML:parserClass (#PCDATA)>

<!ELEMENT JavaXML:xmlrpc-server (JavaXML:handlers)>

<!ELEMENT JavaXML:handlers (JavaXML:handler)+>

<!ELEMENT JavaXML:handler (JavaXML:identifier,

JavaXML:class)>

 <!ELEMENT JavaXML:identifier (#PCDATA)>

<!ELEMENT JavaXML:class (#PCDATA)>

źródło: http://www.oreilly.com/catalog/javaxml

4.11. Rozszerzenia Javy stosowane w technologii XML

4.11.1. JAXB (Java Architecture for XML/Java Binding)

Narzędzia do automatycznego mapowania dokumentów XML na obiekty Javy.

JAXB kompiluje DTD lub XML Schema do jednej lub kilku klas Javy, które

obsługują wszystkie szczegóły parsowania i formatowania dokumentu XML. w

wielu przypadkach wygenerowane klasy są bardziej efektywne niż parsery SAX

lub DOM.

4.11.2. JAXM (Java API for XML Messaging)

Pakiet JAXM umożliwia wysyłanie i odbieranie wiadomości w formacie XML

przy użyciu API Javy. JAXM implementuje protokół SOAP 1.1(Simple Object

Access Protocol) z attachmentami, dzięki czemu użytkownik może koncentrować

się na wysyłaniu, odbieraniu i dekompozycji wiadomości w aplikacji zamiast

programowania komunikacji XML na niskim poziomie.

4.11.3. JAX- RPC (Java API for XML RPC)

Umożliwia budowanie aplikacji sieciowych i usług sieciowych przy zastosowaniu

zdalnego wywoływania procedur (Remote Procedure Call) bazującego na XML.

4.11.4. JAXR (Java API for XML Registries)

Dostarcza standardowego Java API uzyskiwania dostępu do różnych rejestrów

XML.

Rejestr XML stanowi infrastrukturę do tworzenia, rozwijania i znajdywania usług

sieciowych.

JAXR współdziała z innymi technologiami Javy t.j. JAXP, JAXB, JAXM, JAX-

RPC w ramach J2EE (Java 2 Enterprise Edition).

Obecnie w Internecie (http://www.java.sun.com/xml) dostępny jest pakiet Java

WSDP (Java Web Services Developer Pack1.2)- zestaw narzędzi do tworzenia,

testowania i wdrażania aplikacji XML włączając w to interfejsy API do

przetwarzania i przekształcania XML oraz narzędzia do JAXB.

4.12. Ćwiczenia i zadania

Zadanie-1:

Napisz własny dokument XML a następnie dokonaj jego przetwarzania (parsingu)

w modelu SAX, DOM, JDOM.

http://www.java.sun.com/xml

Wymyśl sposób testowania i porównania działania programów dokonujących

analizy zgodnie z każdym z 3 modeli.

Weź pod uwagę takie parametry jak zużycie pamięci i szybkość analizy.

Zadanie-2:

Dokonaj zawężenia dokumentu z zadania-1 zgodnie z definicją DTD i dokonaj

analizy tak zawężonego dokumentu w każdym z trzech modeli.

Zadanie-3:

Dokonaj zawężenia dokumentu z zadania-1 według XML Schema i dokonaj

analizy tak zawężonego dokumentu w modelu SAX i DOM stosując biblioteki

JAXP1.2.

Zadanie-4:

Napisz aplikację sieciową firma-firma w której dane przesyłane są między

firmami w formacie XML.

Firma pierwsza to fabryka samochodów osobowych i dostawczych.

Firma druga sieć to dealerów samochodowych.

Fabryka informuje wszystkich zarejestrowanych dealerów o nowych modelach

samochodów dostępnych aktualnie.

Dealerzy uzyskaną informację przekształcają w ten sposób żeby móc

zaprezentować ją klientom na swojej stronie www.

Na stronie tej umieszczony jest formularz pozwalający przyjmować zamówienia od

klientów na dany model samochodu.

Obsługą formularza powinien zajmować się serwlet działający po stronie dealera.

Wśród dealerów mamy albo dealerów samochodów osobowych albo dostawczych,

zatem każdy z nich musi przefiltrować informację z fabryki i wydzielić tylko tę

która go interesuje.

Każdy z dealerów informuje fabrykę o ilości sprzedanych samochodów danego

modelu. Przy każdym modelu dealer podaje informację ile takich modeli ma

fabryka jeszcze przysłać.

Protokołem komunikacyjnym ma być protokół HTTP.

4.13 Literatura, źródła

• Brett McLaughlin "Java and XML" O'Reilly & Associates

2000; http://www.oreilly.com/catalog/javaxml

• Thierry Violleau "Java Technology and XML-Part I"

2001; http://www.java.sun.com

• Java 2 SDK Standard Edition Documentation (version 1.4.1);

http://www.java.sun.com

