4. XML i Java

XML jest obecnie standardowg reprezentacjq danych zapewniajgcq ich przenosnosc.
Jednakze za tym hastem kryje si¢ tak duzo zagadnien Ze nie sposob ich omowic w jednym czy
dwoch wyktadach. Zatem w wykiadzie tym uwaga skupiona zostanie na obecnie dostepnych
narzedziach Javy - interfejsach API do przetwarzania i przeksztatcania dokumentow w
standardzie XML. Interfejsy te zostang najpierw omowione szczegétowo po to zeby zrozumie¢
pozniejsze przyktadowe programy je wykorzystujgce. Wymaga to od czytelnika duzej
samodzielnosci w analizie tych programow.

4.1.Wprowadzenie
Co to jest XML (Extensible Markup Language) ?
Jak sama nazwa wskazuje jest to rozszerzalny jezyk znacznikow.

Nie wprowadzono w nim ani zestawu obowigzujacych znacznikow ani tez nie
zdefiniowano poprawnego uzycia znacznikow (gramatyki jezyka).

Jest zatem rozszerzalny 1 ma w zasadzie nieograniczone mozliwosci

rozbudowywania.
Nie znaczy to jednak ze nie ma w nim zadnych regul .

Aktualny standard tego jezyka XML 1.0(specyfikacja organizacji W3C-World
Wide Web Consortium) wprowadza podstawowe koncepcje dotyczace struktury
takich dokumentow:

1. dokument XML musi by¢ poprawnie uformowany (skonstruowany)
a) kazdemu znacznikowi otwierajacemu musi odpowiadaé¢ znacznik zamykajacy

b) znaczniki mogg by¢ zagniezdzane ale tylko wewnetrznie (jeden znacznik
catkowicie wewnatrz drugiego)

C) musi istnie¢ znacznik gléwny obejmujacy swoim zasiegiem wszystkie inne
znaczniki

2. dokumentowi XML mozna narzucié¢ poprawno$¢ (zawezic) zgodnie z definicjg DTD
(dokument XML moze by¢ poprawny)

Inny sposéb zawezania dokumentow XML opisuje schemat XML Schema, ale
nalezy pamigtac¢ ze w przeciwienstwie do DTD nie jest on czg$cig

specyfikacji XML 1.0 . Zawezanie dokumentow XML umozliwia zrozumienie
sposobu reprezentacji danych innym osobom jak réwniez innym aplikacjom.

Uwaga : W $wietle tych koncepcji dokument poprawnie
uformowany nie musi by¢ poprawny.

Do czego moze stuzy¢ tak okreslony dokument XML ?

Dokument XML zapewnia przenosny opis danych i ich struktury, zatem
jest ukierunkowany na opis danych a nie jak np. HTML na prezentacj¢ danych.

Dokument taki po utworzeniu i przestaniu go lokalnie lub globalnie przez sie¢
moze zosta¢ poddany analizie (parsowaniu) w celu wydzielenia ze znacznikow
okreslonych atrybutdéw 1 danych. Atrybuty 1 dane po takim przetworzeniu sg
zazwyczaj umieszczane w pewnych strukturach danych, ktore z kolei moga by¢
przetwarzane przez inng aplikacje. Parsowanie dokumentu XML jest

zadaniem ztozonym i z reguly do tego celu uzywa si¢ profesjonalnych parserow.

Gltowne kryteria wyboru parsera to zgodno$¢ ze specyfikacja XML 1 szybkos$¢
analizy.

Do najpopularniejszych parseréw naleza:

Apache Xerces (http://xml.apache.org)

IBM XML4J (http://alphaworks.ibm.com/tech/xml4])

OpenXML (http://www.openxml.org)

Oracle XML Parser (http://technet.oracle.com/tech/xml)

Sun Microsystems Project X (http://java.sun.com/products/xml)

Mimo Ze dokument XML opisuje danec moze jednak by¢ przeksztalcony do
formatu umozliwiajacego prezentacje¢ danych dla r6znych uzytkownikéw za
pomocg arkusza stylow XSL (Extensible StyleSheet Language) i
transformacji XSLT (Extensible StyleSheet Language Transformation).

http://xml.apache.org/
http://alphaworks.ibm.com/tech/xml4j
http://www.openxml.org/
http://technet.oracle.com/tech/xml
http://java.sun.com/products/xml

Transformacje wykonuja specjalne programy zwane procesorami XSLT. Do
najbardziej znanych naleza:

Apache Xalan (http://xml.apache.org)

Lotus XSL Processor (http://www.alphaworks.ibm.com/tech/LotusXSL)

Oracle XSL Processor (http://technet.oracle.com/tech/xml)

[w tym przypadku gléwnymi kryteriami wyboru jest zgodnos¢ ze
specyfikacjami XSL,XSLT i szybkos¢ dziatania.

Ponizszy diagram pokazuje schemat przetwarzania (parsowania) i przeksztatcania
(zmiany formatu) dokumentu XML.

PARSER

Model S4% Struktura S4%

Dokumert ML | > [Model DOM > | Struktura DOM
Mocel JOCib Struktura JOOM

Dokument DTD | | Dokument XMLEchems
Dokument XhL
- s innym farmacie
- np.
ArkLsT XSL PROCESOR XSLT -

HTML
PDF
AP

o

¥

Dokument XML mozna utworzy¢ w dowolnym edytorze tekstowym (np. Notepad)
.Utworzony dokument moze by¢ nastepnie poddany przetworzeniu (parsing) w
celu odzyskania atrybutéw lub danych ze struktury znacznikow.

Mozna rozr6zni€ trzy rodzaje przetwarzania:
1. przetwarzanie bez sprawdzania poprawnosci
2. przetwarzanie ze sprawdzaniem poprawnosci wg DTD

3. przetwarzanie ze sprawdzaniem poprawnosci wg XML Schema

W przypadku 2 i 3.. nalezy najpierw opisa¢ w dokumencie typu DTD (Document
Type Definition) lub XML Schema sposob zawezania dokumentu XML.

DTD defniuje sposéb w jaki ma by¢ skonstruowany dokument XML
wprowadzajac pewne ograniczenia na format znacznikéw 1 ich sktadnie.

To wiasnie uzgodnienie formatu i sktadni zapewnia dokumentowi XML
przenosnos¢ migdzy aplikacjami.

Standard DTD ma jednak powazne ograniczenia: wlasne konstrukcje nie zwigzane
z XML, brak znajomosci hierarchii, trudnosci w obstudze przestrzeni nazw,
niemozno$¢ okreslania relacji miedzy dokumentami XML.

Schemat XML Schema jest alternatywa dla DTD o znacznie bogatszych
mozliwos$ciach.

Istotne jest przede wszystkim ze definiowanie XML odbywa si¢ przy
pomocy konstrukcji XML, co zapewnia sp6jnos¢ opisu dokumentéw XML.

Nalezy jednakze pamigtac Zze nie wszystkie parsery obsluguja sprawdzanie
poprawnos$ci w/g XML Schema.

Po zdecydowaniu si¢ na sposob zawezenia dokumentu XML mamy nastgpnie do
wyboru 3 modele przetwarzania dokumentu XML reprezentowane przez
odpowiednie interfejsy (zestawy funkcji):

« model SAX
« model DOM

« model JIDOM (alternatywa dla SAX lub DOM)

Wsrod zestawow bibliotek mozna wyodrebnic zestaw JAXP (Java API for XML
Processing) pozwalajacy na dokonywanie analizy w modelu SAX lub DOM
niezaleznie od konkretnego producenta parsera. Zestawienie pakietow dla
poszczegdlnych modeli przedstawia tabela:

Model SAX moda DO Model JDOM JAXP XSLT

org.jdom

org.xml.sax javax.xml.transform

org.jdom.adapter . :
org.xml.sax.help org.w3c.do s javax.xml.parse javax.xml.transform.sax
ers m rs

javax.xml.transform.dom

org.xml.sax.ext GBI

org.jdom.output javax.xml.transform.stre
am
org.jdom.filter

org.jdom.transfor
m

Pakiety SAX, DOM, JAXP, XSLT sag wbudowane w J2SE i dostarczane razem z
JDK1.4.1. Pakiety JDOM s3 osobnym zestawem API i trzeba je zaladowac¢ z sieci
niezaleznie od JDK1.4.1. Zrozumienie APl Javy zawartego w tych pakietach
wymaga znajomosci sktadni i struktury dokumentu XML - krotki opis jezyka
znajdziemy w rozdziale nastepnym.

Przenonos¢ danych XML petni wazng role w komunikacji:

aplikacja <------- > aplikacja
system <------- > system
firma <---—---- > firma

Komunikacja taka powinna zaktada¢ w ogo6lnosci istnienie klientéw wymagajacych
prezentacji danych jak rowniez takich ktorzy nie wymagaja takiej prezentacji. Tak
wiec ogdlnie w czasie swojego zycia dokument XML moze podlega¢ cyklowi
przemian danych i ich formatu.

Przyktadowy cykl takich transformacji pokazuje diagram ponize;.

Aplilkcacia 3 Dokument Tranzoformacia
A HSLFELT) Dane &
Danc B4 | T | Dane & s > | FomaB
Format A Format 4 =B
Transformacia Dokument Aplikacia T
Dane B HSLELT) L
Formmat & <:| <:I Dane B <:| Dane A=E
Format B2 A Format B

Warto tez pamigta¢ ze XML to dane tekstowe, ktdre nie wymagajg duzych
zasobow systemowych, Latwo tez podlegaja serializacji, zatem przesytanie ich w
sieci jest nie stanowi problemu i jest szybkie.

Potaczenie XML i Javy — przenosnych danych i przenosnego

kodu pozwala widzie¢ w tym potaczeniu technologie przyszlos$ci, niezaleznie od
aktualnego stanu rozwoju tego standardu 1 narz¢dzi do jego obstugi. Jezeli dodamy
do tego fakt, ze API Javy umozliwia dynamiczne tworzenie dokumentow XML,
odczytywanie, modyfikacje danych oraz przechowywanie danych (informaciji)

w standardowym formacie to juz ta krotka charakterystyka XML zacheca do jego
poznania tego jezyka i zwigzanych z nim technologii.

4.2. Skladnia jezyka XML i struktura dokumentu XML

Omowimy teraz krdtko sktadnie i strukturg dokumentu XML a potem
zaprezentujemy kilka przyktadéw takich dokumentow.

A - skladnia XML:

linstrukcje przetwarzania (PI) |

nakazujg aplikacji przetwarzajacej wykonanie okreslonego zadania
Ich ogo6lna postac to :
<? cel instrukcja ?>

gdzie :

cel - nazwa aplikacji ktéra ma przetwarza¢ dane XML

instrukcja - tancuch znakow zawierajacy informacje lub komendy dla aplikacji

| deklaracje typu dokumentu - okreslenie dokumentu DTD |

<!DOCTYPE JavaXp:Book SYSTEM ”C:\JavaXP.dtd”>

<IDOCTYPE Java:Book PUBLIC " Nazwa
publiczna' http://www.w3.org./DTD/contents.dtd”>

Java:Xp jest elementem gtownym dokumentu

Po stowie SYSTEM Ilub PUBLIC powinien znajdowac si¢ poprawny identyfikator
URI(np. URL)

PUBLIC oznacza ze definicja DTD do ktdrej nastgpuje odwotanie ma zasigg
publiczny 1 moga z niej korzysta¢ wszyscy.

W tym przypadku przed podaniem URI konieczne jest podanie nazwy publicznej.

lencje |

Reprezentujg nietypowe znaki w danych. Po napotkaniu encji parser XML
podstawia pod nig okreslong wartos$¢ i nie przetwarza jej dalej.

Ogodlna posta¢ encji wyglada nastepujaco : &[nazwa-encji];
W XML zdefiniowano 5 encji :
< otwierajacy nawias katowy lub ‘mniejsze niz’ (<)
> zamykajacy nawias katowy lub ‘wigksze niz’ (>)
& znak ampersand
" cudzystow
' apostrof

Encje moga by¢ rowniez definiowane przez uzytkownika, ktéry w ten sposob
moze odwolywac si¢ do zewnetrznego dokumentu lub innego zasobu.

Przyktad takiej encji zobaczymy w jednym z prezentowanych dokumentéw XML.

elementy, atrybuty elementow , dane elementow, przestrzenie
nazw

Element okreslony jest przez uktad znacznikow : otwierajacy 1 zamykajacy.

W znaczniku otwierajagcym zawarta jest nazwa elementu oraz moga by¢
zawarte pary (atrybut, wartosc).

Migdzy znacznikami mogg wystepowac¢ dane elementu.

Nazwa elementu musi rozpoczynac si¢ literg lub podkres§leniem, po ktérym moze
wystapi¢ dowolna liczba liter, cyfr, podkreslen, tagcznikow lub kropek.

Nazwy nie moga zawierac¢ spacji. Wielkos¢ liter jest rozroznialna w nazwach.
Fragment prostego dokumentu XML z elementami zawierajacymi dane i atrybuty
<wiadomos¢ >
<do>Jan Kowalski</do>

<od>Andrzej Talarek</od>

<temat> Kolokwium z Javy</temat>
<tekst zadaniel="2" zadanie2="2"> poszlo mi fatalnie </tekst>
</wiadomos$¢>

Powstaje naturalne pytanie kiedy uzywac atrybutow 1 ich wartosci

a kiedy danych. Nie istnieje niestety zadna specyfikacja ani standard mowiacy o
tym ale utarto si¢ w praktyce, ze atrybutdéw i ich wartos$ci uzywa si¢ do opisu
informacji systemowych, danych elementu uzywa si¢ do opisu informacji
przeznaczonych do prezentaciji.

Specjalnym elementem jest element pusty (nie zawierajacy danych)

<image src="RedBall.gif”/>
Wprowadzony zostat dla uproszczenia takiego zapisu elementu:

<image src="RedBall.gif’></image>
Kazdy element moze posiada¢ nazwe kwalifikowana
przedrostkiem, reprezentujacym okreslong przestrzen nazw oraz umozliwiajgcym
jednoznaczng identyfikacj¢ elementu i w ten spos6b wyeliminowanie kolizji nazw
elementow. Przedrostkowi powinno si¢ przypisa¢ niepowtarzalny identyfikator

URI (np. URL).

Element ponizszy ma nazwe¢ Book ktora pochodzi z przestrzeni
nazw JavaXP. Przestrzen nazw JavaXP skojarzona jest z adresem URL.

<JavaXP:Book xmins:JavaXP="http://www.jb.com/catalog/javaxml/”>

Specyfikacja przestrzeni nazw wymaga, zeby kazdy element XML nalezat do
jakiej$ przestrzeni nazw.

Jezeli zatem nie deklarujemy jawnie przestrzeni nazw za pomocg przedrostka, to
dany element nalezy do przestrzeni domyslne;.

W tym przyktadzie element Book nalezy do domys$lnej przestrzeni nazw
skojarzonej z adresem URL

<Book xmIns="http://www.jb.com/catalog/javaxml/’>

| komentarze |

Komentarz w XML ma postac :

<lI-- oto jest komentarz -->

|sekcja CDATA |

Reprezentuje dane nie przetwarzane przez parser XML Stosowana jest wtedy gdy
aplikacji wywotujacej trzeba przekazac¢ duzg ilos¢ danych nieprzetworzonych
przez parser XML.
W dokumencie XML sekcja CDATA wyglada tak:
<nieprzetwarzane-dane>
<I[CDATA|Diagram:
<krok-1>zainstaluj JVM

<krok-2>znajdz odpowiedni plik properties

<krok-3> pobierz program Program.class z adresu
?ftp://ftp.pjwstk.edu.pl”

11>

</nieprzetwarzane-dane>

B - Struktura dokument XML

Dokument XML sktada si¢ z dwoch zasadniczych czesci : prologu i zawartoSci.

|1 - PROLOG |

Prolog jest pierwszg cze$cig dokumentu XML
P deklaracja identyfikujaca

Prolog powinien zawiera¢ przynajmniej jedng deklaracj¢ ktdra identyfikuje dany
dokument jako dokument XML.

<?xml version="1.0"?>
Znacznik ten moze zawiera¢ generalnie 3 atrybuty:
version — wersja XML

encoding -system kodowania

standalone - czy jest samodzielnym dokumentem XML
<?xml version="1.0" encoding="1S0-8859-2” standalone="no”?>
» inne instrukcje przetwarzania

» deklaracje typu dokumentu(DTD lub XML Schema)

|11 - ZAWARTOSC DOKUMENTU

» element glowny
» elementy zagniezdZzone
» encje

» dane nie przetwarzane

Przesledzimy teraz kilka dokumentéw XML od najprostszych az do bardzie;j
ztozonych. Nalezy zaobserwowa¢ w nich strukture i sktadni¢ dokumentu XML.

Przyktad bardzo prostego dokumentu XML opisujacego towar o numerze
identyfikacyjnym, nazwie, cenie 1 ilosci :

Dokument item.xml

<!-- PROLOG DOKUMENTU -->

<!I-- deklaracja identyfikujaca -->

<?xml version="1.0"?>

<I-- ZAWARTOSC DOKUMENTU -->

<l-- element gléwny: znacznik otwierajacy -->
<ITEM>

<!-- element zagniezdzony z danymi -->

<ID>33445</ID>

<I-- element zagniezdzony z danymi -->
<DESCRIPTION>JavaBook</DESCRIPTION>
<I-- element zagniezdzony z danymi -->
<PRICE>19.95</PRICE>

<I-- element zagniezdzony z danymi -->
<QUANTITY>56</QUANTITY>

<!-- element gléwny: znacznik zamykajacy -->

</ITEM>

Nastepny dokument to dokument opisujacy pozycje figur dla danej konfiguracji
szachownicy.

Tabela polozen
figur na
szachownicy:

White king (biaty krol) Gl
White bishop (biaty goniec) D6
White rook (biata wieza) El

White pawn (bialy pionek) A4
White pawn (bialy pionek) B3
White pawn (biaty pionek) C2
White pawn (bialy pionek) F2
White pawn (bialy pionek) G2
White pawn (bialy pionek) H5
Black king (czarny krol) B6
Black queen(czarna krolowa) A7
Black pawn (czarny pionek) A5
Black pawn(czarny pionek) D4

zrédlo: http://www.java.sun.com

Dokument XML opisujacy te konfiguracje:

Dokument chess.xml

<!-- PROLOG DOKUMENTU -->
<l-- deklaracja identyfikujaca -->
<?xml version="1.0" encoding="UTF-8"?>
<l-- ZAWARTOSC DOKUMENTU -->
<I-- element glowny CHESSBOARD-->
<CHESSBOARD>
<WHITEPIECES>
<I-- element zagniezdzony KING -->
<KING>
<l-- element zagniezdzony POSITION z atrybutami COLUMN i ROW-->
<POSITION COLUMN="G" ROW="1"/>
</KING>
<BISHOP><POSITION COLUMN="D" ROW="6"/></BISHOP>
<ROOK>< POSITION COLUMN="E" ROW="1"/></ROOK>
<PAWN>< POSITION COLUMN="A" ROW="4"/></PAWN>

<PAWN><POSITION COLUMN="B" ROW="3"/></PAWN>

<PAWN><POSITION COLUMN="C" ROW="2"/></PAWN>
<PAWN><POSITION COLUMN="F" ROW="2"/></PAWN>
<PAWN><POSITION COLUMN="G" ROW="2"/></PAWN>
<PAWN><POSITION COLUMN="H" ROW="5"/></PAWN>
</WHITEPIECES>
<BLACKPIECES>
<KING><POSITION COLUMN="B" ROW="6"/></KING>
<QUEEN><POSITION COLUMN="A" ROW="7"/></QUEEN>
<PAWN><POSITION COLUMN="A" ROW="5"/></PAWN>
<PAWN><POSITION COLUMN="D" ROW="4"/></PAWN>
</BLACKPIECES>
<!I-- koniec elementu gléwnego CHESSBOARD -->

</CHESSBOARD>

zrédlo: http://www.java.sun.com

Nastepny dokument opisuje zawarto$¢ ksigzki "Java and XML" (autor: Brett
McLaughlin)

Dokument contents.xml

<l-- PROLOG DOKUMENTU -->

<l-- deklaracja identyfikujaca -->

<?xml version="1.0"?>

<l-- instrukcje odwolujace si¢ do arkuszy stylow XSL -->

<?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
<?xml-stylesheet href="XSL\JavaXML.wml.xsI" type="text/xsl" media="wap"?>
<l-- instrukcje przetwarzania dla aplikacji ‘cocoon’ -->

<?cocoon-process type="xslt"?>

<!I-- deklaracja dokumentu DTD -->
<IDOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">

<l-- ZAWARTOSC DOKUMENTU -->

<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">
<JavaXML:Title>Java and XML</JavaXML:Title>

<JavaXML:Contents>
<JavaXML.:Chapter-1 focus="XML">
<JavaXML:Heading>Introduction</JavaXML:Heading>
<JavaXML.:Topic subSections="7">What Is It?</JavaXML:Topic>
<JavaXML:Topic subSections="3">How Do | Use It?</JavaXML:Topic>
<JavaXML:Topic subSections="4">Why Should | Use It?</JavaXML:Topic>
<JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>
</JavaXML.:Chapter-1>
<JavaXML.:Chapter-2 focus="XML">
<JavaXML:Heading>Creating XML</JavaXML:Heading>
<JavaXML:Topic subSections="0">An XML Document</JavaXML:Topic>
<JavaXML:Topic subSections="2">The Header</JavaXML:Topic>
<JavaXML:Topic subSections="6">The Content</JavaXML:Topic>
<JavaXML.:Topic subSections="1">What's Next?</JavaXML:Topic>
</JavaXML.:Chapter-2>

<JavaXML.:Chapter-3 focus="Java">
<JavaXML:Heading>Parsing XML</JavaXML:Heading>
<JavaXML:Topic subSections="3">Getting Prepared</JavaXML.:Topic>
<JavaXML:Topic subSections="3">SAX Readers</JavaXML:Topic>

<JavaXML:Topic subSections="9">Content Handlers</JavaXML:Topic>

<JavaXML:Topic subSections="4">Error Handlers</JavaXML:Topic>
<JavaXML.:Topic subSections="0"> A Better Way to Load a Parser </JavaXML:Topic>
<JavaXML:Topic subSections="4">"Gotcha!"</JavaXML:Topic>
<JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>
</JavaXML:Chapter-3>
<JavaXML:SectionBreak/>
<JavaXML.:Chapter-4 focus="Java">
<JavaXML:Heading>Web Publishing Frameworks</JavaXML:Heading>
<JavaXML.:Topic subSections="4">Selecting a Framework</JavaXML.:Topic>
<JavaXML:Topic subSections="4">Installation</JavaXML.:Topic>
<JavaXML:Topic subSections="3"> Using a Publishing Framework </JavaXML:Topic>
<JavaXML:Topic subSections="2">XSP</JavaXML:Topic>
<JavaXML:Topic subSections="3">Cocoon 2.0 and Beyond</JavaXML:Topic>
<JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>
</JavaXML.:Chapter-4>

</JavaXML:Contents>

<l-- element z wlasng encja uzytkownika : opis przetworzenia tej encji w definicji
DTD-->

<JavaXML:Copyright> &OReillyCopyright; </JavaXML:Copyright>
<I-- znacznik zamykajacy element glowny JavaXML:Book-->

</JavaXML:Book>

zrodlo: http://www.oreilly.com/catalog/javaxml

4.3. Model SAX

Model SAX (Simple API for XML) jest rozwijany przez cztonkow listy adresowej
XML-dev.

SAX dokonuje odczytywania dokumentu i rozbijania danych na odpowiednie
elementy za pomoca mechanizmu obstugi zdarzen. Definiuje on zdarzenia procesu
przetwarzania dokument XML, ktore beda podlegaty monitorowaniu i obstudze.
Umozliwia dostep do danych w dokumencie XML.

Warto tez pamigta¢ ze SAX definiuje tylko sposob przetwarzania XML natomiast
sam nie dokonuje przetwarzania dokumentow XML (nie jest parserem).

Odpowiednie dla modelu SAX pakiety Javy to : org.xml.sax, org.xml.sax.helpers
oraz org.xml.sax.ext. Omowimy teraz te pakiety zeby zapoznac si¢ z
mozliwo$ciami analizy jakie one dajg 1 zeby przesledzi¢ ich dziatanie w
przyktadzie programu podanym pdznie;.

Interfejsy i klasy pakietu org.xml.sax:

Typ Nazwa Opis
Attributes reprezentuje list¢ atrybutow XML;
rozpoznaje przestrzenie nazw
Interfejsy ContentHandler operacje na zawartosci dokumentu XML
DTDHandler Obstuga podstawowych zdarzen w
dokumencie DTD
EntityResolver Rozpoznawanie encji
ErrorHandler Podstawowy interfejs do obstugi zdarzen
SAX
Locator Lokalizacja zrodet zdarzen SAX w
dokumencie
XMLFilter Filtr danych, rozszerza XMLReader
XMLReader Okreslenie sposobu przetwarzanie w/g

modelu SAX2.0.Implementowany przez
parsery réznych producentow

Klasy InputSource reprezentacja zrodta danych XML do
przetwarzania: strumien bajtow, strumien
znakow, URI

SAXException Zglaszany przy wywolaniach zdarzen SAX
SAXNotRecognizedException |Zgtaszany przez parser gdy nie rozpoznano
Klasy nazwy wlasciwosci

wyjatkow [SAXNotSupportedException | Zgtaszany przez parser gdy brak jest
obstugi danej wtasnosci lub cechy

SAXParserException Zglaszany w czasie przetwarzania przez
parser

Interfejs Attributes definiuje funkcjonalnos¢ zwigzang z listg atrybutow.
Umozliwia dostep do listy atrybutéw na 3 rézne sposoby:

- poprzez indeks atrybutu
- poprzez identyfikator przestrzeni nazw i nazwe lokalng atrybutu
- poprzez nazwe atrybutu kwalifikowang przestrzenia nazw

Porzadek atrybutéw na liscie jest nieokre§lony i1 zmienia si¢ od implementacji do
implementacji.

Funkcje interfejsu Attributes

int |getIndex (String gName)
dostarcza indeks atrybutu poprzez nazwg¢ atrybutu kwalifikowang
przedrostkiem przestrzeni nazw

int |getIndex (String uri, String localName)
dostarcza indeks atrybutu poprzez identyfikator przestrzeni nazw i nazwe lokalng
atrybutu.

int |getLength ()
dostarcza liczbg atrybutow na liscie.

String getLocalName (int index)
dostarcza lokalng nazwe atrybutu na podstawie indeksu.

String getQName (int index)

dostarcza kwalifikowang nazwe atrybutu na podstawie indeksu.
String lgetType (int index)

dostarcza typ atrybutu na podstawie indeksu.

String getType(String gName)
dostarcza typ atrybutu na podstawie nazwy kwalifikowanej atrybutu.

String getType (String uri,String localName)
dostarcza typ atrybutu na podstawie identyfikatora przestrzeni nazw i nazwy
lokalnej.

String |getURI (int index)

dostarcza identyfikator przestrzeni nazw atrybutu poprzez indeks.
String getValue (int index)

dostarcza warto$¢ atrybutu poprze indeks.
String getValue (String gName)

dostarcza warto$¢ atrybutu o podanej nazwie kwalifikowane;.
String |getValue (String uri,String localName)

dostarcza warto$¢ atrybutu na podstawie identyfikatora przestrzeni nazw i nazwy
lokalnej.

Interfejs ContentHandler jest implementowany przez wigkszos¢ aplikacji SAX,w
ktorych istotne sg informacje o logicznej zawartosci dokument XML. Dzigki
implementacji tego interfejsu i zarejestrowaniu implementacji za

pomocg setContentHandler() parser otrzymuje informacje o zdarzeniach
wywotanych przez poszczegdlne komponenty dokumentu XML. Kolejnosé
otrzymanych zdarzen odzwierciedla kolejnos¢ wystepowania odpowiednich
komponentow.

Funkcje przedstawione w tabeli sg funkcjami typu "callback" i sg wywotywane po
napotkaniu w dokumencie XML odpowiednich konstrukciji.

Funkcje interfejsu ContentHandler

voi characters (char[] ch, int start, int length)

udostepnia dane zawarte w elemencie w postaci tablicy znakéw oraz indeks
poczatkowy 1 koncowy danych do odczytania; informuje rowniez o biatych
znakach

(o}

vol lendDocument ()
d | informacja o koncu przetwarzania dokumentu

vo lendElement (String namespaceURI, String localName, String gName)
id| koniec elementu; namespaceURI jest jest przestrzenig tego danego elementu;
localName- nazwa lokalna elementu; gName- nazwa globalna elementu

vol |endPrefixMapping (String prefix)
d ' koniec odwzorowania przedrostka przestrzeni nazw; prefix- znaleziony przedrostek
przestrzeni nazw

vo |ignorableWhitespace (char[] ch, int start, int length)
id informacja o biatych znakach ignorowanych w dokumencie XML; ch - tablica
znakow zawartych w elemencie; start. length - indeksy danych w tablicy.

vo |processingInstruction (String target, String data)
idinformacja o napotkanej instrukcji przetwarzania; target- obiekt docelowy PI ; data-
dane wystane do PI

vo | setDocumentlocator (Locator locator)
id lustalenie obiektu lokalizatora podajacego miejsce wystgpienia wywolania
wstecznego; locator - lokalizator miejsca wywotania

vo |skippedEntity (String name)

id| informacja o encji pominigtej przez parser; name - nazwa pominietej encji

vo |startDocument ()

idinformacja o poczatku dokumentu.

vo |startElement (String namespaceURI, String localName, String gName,

id|Attributes atts)
poczatek elementu; namespaceURI - identyfikator przestrzeni nazw danego
elementu; localName - nazwa lokalna elementu; gName - nazwa globalna elementu

vo |startPrefixMapping (String prefix, String wuri)

id poczatek odwzorowania przedrostka przestrzeni nazw; prefix- znaleziony
przedrostek przestrzeni nazw ; uri - identyfikator URI przestrzeni nazw

Interfejs ErrorHandler to podstawowy interfejs do obstugi bledéw SAX.

Obiekt klasy implementujacej musi by¢ zarejestrowany przez parser za pomoca
funkcji setErrorHandler().

Funkcje przedstawione w tabeli sg funkcjami typu "‘callback™ i sa wywotywane po
wystgpieniu w dokumencie XML okreslonych biedow.

Funkcje interfejsu ErrorHandler

vold |error (SAXParsekxception exception)
btad niekrytyczny - naruszono regute XML (zazwyczaj naruszenie sktadni);
przetwarzanie moze by¢ kontynuowane

void fatalError (SAXParseException exception)
btad krytyczny - naruszona zostata zasada XML; dalsze przetwarzanie nie jest
mozliwe lub niecelowe

void \'warning (SAXParseException exception)
ostrzezenie -zadne reguty XML nie zostaly naruszone ale wystepuje niepoprawny
fragment dokumentu

Interfejs DTDHandler deklaruje 2 funkcje do obstugi zdarzen zwiazanych z
przetwarzaniem dokumentu DTD:

Funkcje interfejsu DTDHandler

vo |notationDecl (String name, String publicId, String systemId)
id informacja o wystgpieniu deklaracji NOTATION; name - nazwa encji; publicld -
identyfikator publiczny; systemld - dentyfikator systemowy

vo lunparsedEntityDecl (String name, String publicId, String systemId
id|, String notationName)

informacja o wystapieniu deklaracji nie przetwarzanej encji; name - nazwa encji;
publicld - identyfikator publiczny; systemld - identyfikator systemowy

Obie te metody sg wykorzystywane rzadko, gdyz zdarzenia zwigzane z czytaniem
definicji DTD sg znacznie mniej wazne niz te zwigzane z przetwarzaniem
dokumentu XML.

Interfejs EntityResolver stuzy do rozpoznawania i thumaczenia zewnetrznych encji
w dokumencie XML.

Nie wszystkie aplikacje muszg implementowac ten interfejs. Szczegolnie
pozyteczny bedzie w aplikacjach tworzacych dokumenty XML z baz danych lub
innych specjalizowanych zrodet albo tez w aplikacjach uzywajacych
identyfikatoréw innych niz URL.

Funkcje interfejsu EntityResolver

InputSource resolveEntity (String publicId, String systemId)
dostarcza zrodto do ktérego odnosi si¢ encja; publicld, systemld-
identyfikator publiczny i systemowy encji.

Obiekt InputSource moze by¢ rowniez zastosowany jako argument

metody parse() klasy Parser .Parser SAX bedzie uzywat tego obiektu do
okreslenia sposobu czytania dokumentu XML. Jezeli dostepny jest on jako
strumien znakow lub bajtéw parser bedzie czytat z tych strumieni bezposrednio.
Jezeli strumienie te nie sg dostepne parser bedzie probowat otworzy¢ potaczenie
z zasobem identyfikowanym przez identyfikator systemowy.

Konstruktory klasy InputSource podaje tabela.

Konstruktory klasy InputSource

InputSource ()
konstruktor bezargumentowy

InputSource (InputStream byteStream)
tworzy obiekt InputSource na bazie strumienia bajtow.

InputSource (Reader characterStream)
tworzy obiekt InputSource na bazie strumienia znakow.

InputSource (String systemId)
tworzy obiekt InputSource na podstawie identyfikatora systemowego.

W podanym przyktadzie konstruktor InputSource po napotkaniu encji z
identyfikatorem systemowym "http://www.myhost.com/today" dostarcza aplikacji
zrédta danych typu strumienia znakowego

import org.xml.sax.EntityResolver;
import org.xml.sax.InputSource;

public class MyResolver implements EntityResolver {
public InputSource resolveEntity (String publicId, String systemId) {

if (systemId.equals ("http://www.myhost.com/today")) {
Reader reader = new FileReader ("data.txt");
//zwraca zrédio danych typu strumienia znakowego
return new InputSource (reader);

}

else return null;

} //resolveEntity ()
} //class MyResolver

Interfejs Locator stuzy do kojarzenia zdarzenia SAX z miejscem w dokumencie w
ktérym nastapilo wywolanie wsteczne.

Wyniki dostarczone przez metody tego interfejsu beda okreslone tylko w zakresie
metod obiektu ContentHandler.

Parser SAX nie musi dostarczac obiektu typu Locator ale jego utworzenie jest
bardzo pozyteczne .

Funkcje interfejsu Locator

int |getColumnNumber ()
dostarcza numer kolumny w dokumencie XML, gdzie wystapito zdarzenie.

int |getLineNumber ()
dostarcza numer wiersza w dokumencie XML, gdzie wystapito zdarzenie.

String lgetPublicId ()
dostarcza identyfikator publiczny zdarzenia.

String |lgetSystemId ()
dostarcza identyfikator systemowy zdarzenia..

Interfejs XMLReader stuzy do czytania dokumentu XML za pomocg wywotan
wstecznych (“"callback™).

Musi by¢ implementowany prze parser SAX2.

Funkcje interfejsu XMLReader

ContentHandler getContentHandler ()
dostarcza zarejestrowany obiekt typu ContentHandler.
DTDHandler |getDTDHandler ()
dostarcza zarejestrowany obiekt typu DTDHandler.
EntityResolver |getEntityResolver ()
dostarcza zarejestrowany obiekt typu EntiityResolver.
ErrorHandler |getErrorHandler ()
dostarcza zarejestrowany obiekt typu ErrorHandler.
boolean |getFeature (String name)
dostarcza stan podanej cechy parsera.
Object getProperty (String name)
dostarcza obiekt podanej wiasciwosci parsera.
void parse (InputSource input)

analizuje dokument XML podany jako obiekt typu InputSource.

void parse (String systemId)
analizuje dokument XML na podstawie identyfikatora systemowego.

void |setContentHandler (ContentHandler handler)
rejestruje obiekt typu ContentHandler.

void |setDTDHandler (

DTDHandler

handler)

rejestruje obiekt typu DTDHandler.

void |setEntityResolver

(EntityResolver

resolver)

rejestruje obiekt typu EntityResolver.

void getErrorHandler

(ErrorHandler handler)

rejestruje obiekt typu ErrorHandler.

void |setFeature (

String

name, boolean value)

wlacza lub wylacza nazwang cechg parsera .

void setProperty (

String

name, Object value)

ustawia nazwang wiasciwos¢ parsera i obiekt wykorzystywany do jej

realizacji.

W podstawowym interfejsie XMLReader zdefiniowano 2 funkcje do ustalania
wtasciwosci 1 cech danej implementacji parsera oraz 2 funkcje do uzyskiwania
informacji o wtasciwos$ciach i cechach danej implementacji parsera. Sg to funkcje:

void setProperty(String propertyName,Object obj)

void setFeature(String featureName,boolean state)

Object getProperty(String propertyName)

boolean getFeature(String featureName)

W tych funkcjach parametry: propertyName i featureName sg pelnymi
identyfikatorami URI(np.URL), obiekt obj jest obiektem wykorzystywanym do

realizacji okreslonej wlasciwosci.

Identyfikator URI wlasciwosci

Opis wlasciwosci

http://xml.org/sax/properties/lexical-handler

Ustalenie implementacji
interfejsu LexicalHandler do obstugi
komentarzy i odwotan do definicji DTD

http://xml.org/sax/properties/declaration-
handler

Ustalenie implementacji
interfejsu DeclHandler do obstugi zawezen
DTD

http://xml.org/sax/properties/dom-node

Pobranie wezta biezacego lub gtdéwnego przy
przetwarzaniu w modelu DOM

http://xml.org/sax/properties/xml-string

Pobranie tekstu, ktory spowodowat zajécie
biezacego zdarzenia

Identyfikator URI cechy

Opis cechy

http://xml.org/sax/features/namespaces

Wykonywanie przetwarzania przestrzeni
nazw

http://xml.org/sax/features/namespace-
prefixes

Komunikowanie o atrybutach deklaracji
przestrzeni nazw

http://xml.org/sax/features/string-interning

Internalizacja nazw elementow,
przedrostkow, identyfikatorow URI

http://xml.org/sax/features/validation sprawdzanie poprawnosci dokumentu XML

http://xml.org/sax/features/external-general- | Przetwarzanie zewnetrznych encji (ogdlnych)
entities

http://xml.org/sax/features/external- Przetwarzanie zewnetrznych encji
parameter-entities (parametrow)

Interfejsy i klasy pakietu org.xml.sax.helpers

Pakiet ten zawiera klasy pomocnicze (implementacje interfejséw) dla
pakietu org.xml.sax.”

Typ Nazwa Opis
Attributesimpl Domyslna implementacja Attribute-dodawanie i
usuwanie atrybutow
klasy | DefaultHandler Domyslna klasa bazowa dla obstugi zdarzen SAX?2 -

puste implementacje interfejsow obstugi SAX:
EntityResolver, DTDHandler, ContentHandler,
ErrorHandler

Locatorimpl Implementacja interfejsu Locator, ustawienie numerow
wierszy i kolumn

NamespaceSupport Obstuga przestrzeni nazw

ParserAdapter Adaptacja parsera SAX1 do SAX2

XMLFilterImpl Domyslna implementacja Filter ; implementuje
XMLFilter, EntityResolver, DTDHandler,
ContentHandler

XMLReaderAdapter | Adaptacja parsera SAX2 do SAX1

XMLReaderFactory | Tworzenie implementacji XMLReader wg nazwy lub
wlasciwosci

Bardzo wazng klasa pomocniczg jest klasa XMLReaderFactory do tworzenia
egzemplarza parsera.

Funkcje klasy XMLReaderFactory

static XMLReader |createXMLReader ()
tworzenie obiektu typy XMLReader na podstawie wtasciwosci
Systemowej org.xml.sax.driver

static XMLReader createXMLReader (String className)
tworzenie obiektu typy XMLReader na podstawie nazwy klasy
parsera.

Metody powyzsze nie bedg uzyteczne w srodowiskach, gdzie wlasciwosci
systemowe sg niedostepne lub program nie moze tadowa¢ dynamicznie klas.

Przyktad utworzenia egzemplarza XMLReader:

try { XMLReader myReader = XMLReaderFactory.createXMLReader(); 1}
catch (SAXException e) { System.out.println(e.getMessage()):; }

Na zakonczenie podamy jeszcze dwa interfejsy rozszerzajace mozliwosci analizy.

Interfejsy pakietu org.xml.sax.ext

Typ Nazwa Opis
interfejsy DeclHandler Rozszerzenie obstugi zdarzen deklaracji DTD w SAX2
LexicalHandler Rozszerzenie obstugi zdarzen leksykalnych w
SAX2:DTD, encji, komentarzy

Przyktad szablonu programu wykorzystujacego do przetwarzania dokumentu XML
poznane interfejsy 1 klasy. Czytelnik powinien znalez¢ w tym programie omawiane
interfejsy i klasy 1 zaobserwowac ich funkcjonalno$¢ uruchamiajac ten program.

//import poszczegdlnych klas potrzebnych do przetwarzania
//mozna zastapié importem catych pakietéw, ale tak widaé ktére
//konkretnie klasy sa wykorzystywane w programie

import java.io.*;

import org.xml.sax.Attributes;
import org.xml.sax.ContentHandler;
import org.xml.sax.ErrorHandler;

import org.xml.sax.Locator;

import org.xml.sax.XMLReader;
import org.xml.sax.helpers.XMLReaderFactory;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParsekxception;

//import klasy producenta parsera SAX potrzebny
//gdy chcemy utworzyé jego obiekt za pomoca new SAXParser ()
import org.apache.xerces.parsers.SAXParser;
class SAX {
public static void main (String[] args)
{
String xmlResource="";

int index = 0;

index = Integer.parselnt(args[0]);

// nazwy plikéw XML
String[] file = {"item.xml","chessboard.xml", "contents.xml"};

try |

// pobranie $ciezki pliku do przetworzenia
xmlResource = "file:\\" + new File(file[index]) .getAbsolutePath();

System.out.println (xmlResource) ;

}

catch (Exception e) {}
System.out.println ("Przetwarzanie pliku: " + xmlResource + "\n");

// utworzenie obiektu obstugi zawartosci
ContentHandler contentHandler = new MyContentHandler () ;

//utworzenie obiektu obstugi biteddéw
ErrorHandler errorHandler = new MyErrorHandler () :;

try {
// utworzenie instancji parsera
XMLReader parser =
XMLReaderFactory.createXMLReader (
"org.apache.xerces.parsers.SAXParser") ;

//inny sposéb utworzenia parsera SAX
//XMLReader parser = new SAXParser();

System.out.println ("parser= "+ parser);

// zarejestrowanie obiektu obslugi zawartosci
parser.setContentHandler (contentHandler) ;

// zarejestrowanie obiektu obstugi biedéw
parser.setErrorHandler (errorHandler) ;

// wylaczenie sprawdzania poprawnosci
parser.setFeature (
"http://xml.org/sax/features/validation", false);

// wtaczenie obslugi przestrzeni nazw
parser.setFeature (
"http://xml.org/sax/features/namespaces", true) ;

// analiza dokumentu XML
parser.parse (xmlResource) ;

}
catch (IOException e) {
System.out.println("Biad czytania pliku XML: " + e.getMessage());
}
catch (SAXException e) {
System.out.println("Biad analizy pliku XML: " + e.getMessage()):;
}
} //main ()
} // class SAXParser

class MyContentHandler implements ContentHandler {

String data = "";

private Locator locator; //przechowuje obiekt lokalizacji zdarzen

//ustalenie obiektu lokalizujacego

public void setDocumentLocator (Locator locator) {
this.locator = locator;
System.out.println ("Ustalenie obiektu lokalizujacego");

}

//poczatek przetwarzania dokumentu
public void startDocument () throws SAXException {
System.out.println ("Poczatek przetwarzania");

}

//koniec przetwarzania dokumentu
public void endDocument () throws SAXException {
System.out.println ("Koniec przetwarzania");

}

//napotkanie instrukcji przetwarzania
public void processingInstruction(String target, String data)
throws SAXException {

System.out.println("PI: Cel PI:" + target + " Dane:" + data);
}

//poczatek odwzorowania przestrzeni nazw
public void startPrefixMapping(String prefix, String uri) {
System.out.println (
"Przedrostek " + prefix +" odwzorowywany na " + uri
);
}

//koniec odwzorowywania przestrzeni nazw
public void endPrefixMapping (String prefix) {
System.out.println("koniec odwzorowywania przedrostka " + prefix);

}

//poczatek elementu;pobranie nazwy elementu,atrybutu i jego wartosci
public void startElement (
String namespaceURI, String localName,String rawName, Attributes
atts
)
throws SAXException {

System.out.print ("poczatek elementu " + localName) ;
if (!namespaceURI.equals("")) {
System.out.println (
" nazwa elementu " + namespaceURI + " [" + rawName + "]");

}

else System.out.println (" brak przestrzeni nazw");

for (int i1i=0; i<atts.getLength(); i++)
System.out.println(
" Atrybut: " + atts.getlLocalName (i) +"=" +

atts.getvValue(i));

//dane znakowe elementu
System.out.println("dane elementu " + localName + ":" + data);

}//startElement ()

//koniec elementu
public void endElement (
String namespaceURI, String localName, String rawName

)
throws SAXException {

System.out.println("koniec elementu: " + localName + "\n");

}

//dane znakowe elementu
public void characters(char[] ch, int start, int end)
throws SAXException {

data = new String(ch, start, end);

}

//pominiete biate znaki
public void ignorableWhitespace (char[] ch, int start, int end)
throws SAXException {

String s = new String(ch, start, end);
System.out.println ("pominiete biate znaki: [" + s + "]1");

}

//nie analizowane encje
public void skippedEntity(String name) throws SAXException {
System.out.println("Nie analizowane encja " + name);

}

class MyErrorHandler implements ErrorHandler {
//ostrzezenie:czego$ brakuje lub co$ jest niewlasciwe
public void warning (SAXParseException e)

throws SAXException {

System.out.println(
"*Ostrzezenie w czasie analizy*\n" +

" Linia: " + e.getLineNumber () + "\n" +
" URI: " + e.getSystemId() + "\n" +
" Komunikat: " + e.getMessage());

throw new SAXException ("Ostrzezenie");

}

//btad niekrytyczy;naruszona zasada XML;kontynuacja analizy
public void error (SAXParseException e)
throws SAXException {

System.out.println(
"**Parsing Error**\n" +

" Linia: " + e.getLineNumber () + "\n" +
" URI: " + e.getSystemId() + "\n" +
" Komunikat: " + e.getMessage()):;

throw new SAXException ("Biad niekrytyczny");
}

//btad krytyczny;naruszone zasada XML;niemoznos$é kontynuacji analizy
public void fatalError (SAXParseException e)
throws SAXException {

System.out.println(
"**Parsing Fatal Error**\n" +

" Linia: " + e.getLineNumber () + "\n" +
" URI: " + e.getSystemId() + "\n" +
" Komunikat: " + e.getMessage()):;

throw new SAXException("Btad krytyczny");
}

}//class SAX

4.4. Model DOM

Model DOM (Document Object Model) zostat zdefiniowany przez W3C DOM
Working Group. DOM umozliwia dostep do danych oraz manipulowanie danymi.

W interfejsie DOM dokument XML reprezentowany jest jako struktura drzewa-
caty dokument XML jest wczytywany do pamieci a wszystkie dane umieszczane sg
w weztach tego drzewa. Aplikacja moze dziatac teraz na strukturze drzewa
przeszukujac wezly i przetwarzajac dane w weztach.

Jednakze umieszczanie calego dokumentu w pamigci powoduje dla duzych
dokumentéw wyrazne spowolnienie przetwarzania a nawet uniemozliwienie
dalszego dziatania aplikacji.

Odpowiedni dla modelu DOM pakiet Javy to: org.w3c.dom.Nie bedziemy ty
razem doktadnie omawia¢ tych interfejsow. Podamy pdzniej ich zastosowanie na
konkretnym przyktadzie programu analizujacego.

Interfejsy i klasy pakietu org.w3c.dom

Typ Nazwa Opis
Interfejsy Attr Ustawianie wartosci atrybutu, dostep do nazwy |
wartosci
CDATASection Rozszerza Text; znacznik sekcji CDATA
CharacterData Dostep do weza tekstowego, ustawianie jego
wartos$ci, operacje na znakach
Comment Reprezentacja (znacznik) komentarza
Document Reprezentacja dokumentu XML; tworzenie

nowych elementow XML

DocumentFragment Operowanie na czesci obiektu Document

DocumentType Reprezentacja deklaracji DOCTYPE z dokumentu
XML

DOMImplementation | Udostepnienie implementacji parsera DOM
okreslonego producenta

Element Reprezentacja elementu XML; nazwy | atrybuty
elementow, ustawianie wartosci

Entity

Reprezentacja encji; dostep do identyfikatorow

EntityReference Reprezentacja wyniku przetworzenia encji
NamedNodeMap Lista wegzlow nazwanych

Node Gtowny interfejs dla DOM; operacje na weztach
NodeL.ist Kolekcja wezlow

Notation Reprezentacja konstrukcji NOTATION z

DTD(deklarowanie encji lub PI)

Processinglnstruction

Reprezentacja instrukcji przetwarzania (P1)

Text Reprezentacja danych tekstowych elementu XML
Klasy DOMEXxception Zgltaszany w wyniku btedu przetwarzania, zawiera
wyjatkow kody btedow

Struktura drzewa w modelu DOM:

Macle:

¥ ¥ ¥ ¥ ¥ ¥ k. 3
Motation | |Errtity| | EntiyReference | | Attr | |Elemerrt | | Document | | Documernt Type | | DocumertFragment
¥
Processinginstruction | | CharactetData

i ¥
| DObdlnplemertation | Comtment | | Text
| Mamedhodeiap |]

CDATASection

ModeList |

Nie bedziemy tutaj omawiali funkcjonalno$ci tych interfejsow - przedstawimy
niektore z metod na konkretnym przyktadzie analizy dokumentu XML w
modelu DOM.

import Jjava.io.*;

//importy pakietéw DOM
org.
org.
org.
.w3c.dom.Node;

import
import
import
import
import

//import klasy

org

org.

w3c.dom.Document

w3c.dom.NodeList

w3c.dom.DocumentType;
w3c.dom.NamedNodeMap;

’

parsera danego producenta

import org.apache.xerces.parsers.DOMParser;

public class DOM ({

public static void main (String args []) throws IOException {
int index = 0;
index = Integer.parselnt(args[0]);

// nazwy plikéw XML
String[] file={"item.xml","chessboard.xml", "contents.xml"};

try {

// pobranie $ciezki do pliku do przetworzenia

String xmlResource = "file:\\" + new
File(file[index]) .getAbsolutePath () ;

System.out.println (xmlResource) ;

//utworzenie parsera danego producenta
DOMParser parser = new DOMParser();

//ustawienie cechy parsera 'validation'
parser.setFeature ("http://xml.org/sax/features/validation", false);

//ustawienie cechy parsera 'namespaces'
parser.setFeature ("http://xml.org/sax/features/namespaces", true) ;

//dokonanie analizy
parser.parse (xmlResource) ;

//uzyskanie wyniku analizy - obiektu typu Document
Document doc = parser.getDocument () ;

//wydrukowanie zawartos$ci drzewa ktdérego wezlem jest obiekt typu
Document

printTree (doc, "");

}

catch (Exception e) {e.printStackTrace();}

}//main ()
public static void printTree (Node node, String insets)
{ switch (node.getNodeType ()){ //okreslenie typu wezla

case Node.DOCUMENT NODE: //wezel typu Document

//DOM-Level2 nie udostepnia deklaracji XML
System.out.println ("<xml version=\"1.0\">\n");

Document doc= (Document)node;

//pobranie elementu gidéwnego i wywolanie rekurencyjne printTree ()
printTree (doc.getDocumentElement (), "") ;

break;
case Node.ELEMENT NODE: //wezel typu NODE

String name=node.getNodeName () ;

System.out.print (insets+"<"+name) ;

NamedNodeMap attributes=node.getAttributes();

for(int i=0;i<attributes.getLength () ;i++) {
Node current=attributes.item(i);
System.out.print (" "+current.getNodeName () +

"=\""+current.getNodeValue () +"\"");
}
System.out.print (">"); //formatowanie

//rekurencyjne przetwarzanie elementéw potomnych
NodeList children = node.getChildNodes () ;

if (children!=null)
for (int 1=0;i<children.getLength () ;i++)
printTree (children.item(i), insets + " ");
break;

case Node.TEXT NODE: //wezel typu Text

//wyéwietlenie danych tekstowych
System.out.print (node.getNodeValue()) ;

break;
case Node.CDATA SECTION NODE: //wezel typu CDATASection

//wyswietlenie danych tekstowych z bloku CDATA
System.out.print (node.getNodeValue ()) ;

break;

case Node.PROCESSING INSTRUCTION NODE: //wezel typu
ProcessingInstruction

//wyswietlenie instrukcji przetwarzania PI
System.out.print ("<?"+node.getNodeName () +
" "+node.getNodeValue ()+ "?2>");
break;
case Node.ENTITY REFERENCE NODE: //wezel typu EntityReference
//wyswietlenie encji...
break;
case Node.DOCUMENT TYPE NODE: //wezet typu DocumentType

//wyéwietlenie deklaracji DTD...

break;

} //switch
} //printTree ()

} //class DOM

Jak wida¢ z tego przyktadu cata struktura elementow XML w postaci drzewa jest

przetwarzana przez program.

Porownanie gtownych cech interfejsow SAX i DOM umozliwia ponizsza tabela:

Interfejs SAX

Interfejs DOM

Dane pobierane w obstudze zdarzen

Dane pobierane ze struktury drzewa

Sekwencyjny dostep do danych

Swobodny dostep do danych

Mate zuzycie pamieci

Znaczne zuzycie pamieci

Przetwarzanie w pamieci czesci
dokumentu

Przetwarzanie w pamieci
catego dokumentu

Przetwarzanie jednokrotne dokumentu

Przetwarzanie wielokrotne dokumentu

Pewnej alternatywy w stosunku do obu modeli dostarcza model JDOM, ktory

omawiamy w nastepnym punkcie.

4.5. Model JDOM

JDOM zostat wyspecyfikowany przez Bretta McLaughlina 1 Jasona Huntera (K&A

Sofware).

Interfejs JIDOM jest zamiennikiem (w wigkszoS$ci zastosowan)
interfejsu SAX lub DOM bazujacym na Javie ale nie jest oparty ani na SAX ani

na DOM.

Pozwala utworzy¢ dokument XML o strukturze drzewa bez stosowania rozwigzan
typowych dla DOM, a jednocze$nie jest bardzo szybki podobnie jak SAX.

Ponadto zawiera konkretne klasy (a nie tylko interfejsy) umozliwiajace

bezposrednie tworzenie obiektow.

Odpowiednie dla modelu JDOM pakiety Javy to : org.jdom, org.jdom.input,
org.jdom.output,org.jdom.adapters, org.jdom.filter, org.jdom.transform

Interfejsy i klasy pakietu org.jdom

Typ Nazwa Opis
Attribute reprezentacja atrybutu XML; uzyskanie
wartosci atrybutu; informacja o przestrzeni
Interfejsy nazw
CDATA reprezentacja sekcji CDATA z dokumentu
XML
Comment Tekst komentarza
DocType Reprezentacja deklaracji DOCTYPE z
dokumentu XML
Document reprezentacja dokumentu XML, ustawienie i
pobranie wartosci DocType i listy instrukcji
Pl
Element Reprezentacja elementu XML z obstuga
przestrzeni nazw
EntityRef Reprezentacja referencja zawartej w encji
NameSpace Reprezentacja przestrzeni nazw; tworzenie
przestrzeni nazw
ProcessinglInstruction Reprezentacja instrukcji PI; pobranie i
ustawienie danych instrukcji
Text zawarto$¢ tekstowa dokumentu XML
Verifier Weryfikacja nazw, danych i innych
komponentow XML
DataConversionException |Rozszerza JDOMException; btad konwersji
elementu Attribute lub Element na okreslony
Klasy typ
wyjatkow | lllegal ADDEXxception dodawanie nielegalnego obiektu do struktury

JDOM

IllegalDataException

dodawanie nielegalnego tekstu do struktury
JDOM

IllegalNameEXxception

dodawanie nazwy do struktury JDOMnie
spetiajacej konwencji XML

Illegal TargetException

dodawanie nielegalnego obiektu docelowego
do struktury JDOMOo niewlasciwej nazwie

JDOMEXxception

Podstawowy wyjatek JDOM; komunikaty o
btedach

Klasy pakietu org.jdom.adapters :

Pakiet ten zawiera klasy adapterow pozwalajace na uzyskanie obiektu DOM
Document z dowolnego parsera DOM

Typ Nazwa Opis
Interfejs DOMAdapter Interfejs, ktory musi by zaimplementowany przez
klasy adapterow
AbstractDOMAdapter | Implementacja DOMAdapter
CrimsonDOMAdapter | Adapter dla parsera Crimson

Klasy

JAXPDOMAdapter

Adapter dla parsera JAXP

OracleV1DOMAdapter | Adapter dla parsera Oracle Versionl

OracleV2DOMAdapter | Adapter dla parsera Oracle Version2

ProjectXDOMAdapter | Adapter dla parsera Sun Project X

XercesDOMAdapter

Adapter dla parsera Apache Xerces

XML4JDOMAdapter

Adapter dla parsera IBM XML4J DOM

Interfejsy i klasy pakietu org.jdom.input

Typ Nazwa Opis

Interfejsy JDOMFactory Implementowany do tworzenia obiektow JDOM
BuilderErrorHandler Implementuje org.xml.sax.ErrorHandler
DefaultJDOMFactory Tworzenie klas JDOM(Element,Document,Comment

Klasy DOMBuilder Tworzenie obiektu JDOM Document na bazie parsers
SAXBuilder Tworzenie obiektu JDOM Document na bazie parsers
SAXHandler Obstuga i pomoc dla SAX Builder

Interfejsy i klasy pakietu org.jdom.output

Typ [Nazwa Opis
DOMOutputter Przetwarza drzewo JDOM na drzewo DOM
SAXOutputter dla drzewa JDOM generuje zdarzenia SAX2
klasy | XMLOutputter Obstuga wyjsciowego obiektu Document; wyslanie
do strumienia OutputStream w formacie XML

Interfejsy i klasy pakietu org.jdom.filter

Typ

Nazwa

Opis

Interfejsy |[Filter

Filtrowanie listy obiektéw JDOM

Klasy

ContentFilter

Implementacja Filter; filtrowanie zawartos$ci
elementu

ElementFilter

Implementacja Filter; filtrowanie elementow

Obiekt ContentFilter opisuje wszystkie dozwolone obiekty JDOM i pozwala
ustala¢ widoczno$¢ tych obiektow. Filtrowanie jest dokonywane za pomoca
odpowiedniej maski w ktorej kazdy bit informuje o tym czy obiekt JDOM ma by¢
widoczny czy nie.

Przyktadowo w celu uwidocznienia weztow typu Text 1 CDATA w
elemencie elem uzy¢ mozna nast¢pujacych instrukcji:

Filter filter = new ContentFilter (ContentFilter.TEXT |

ContentFilter.CDATA) ;

List content = elem.getContent (filter);

Alternatywa dla maskowania bitéw jest uzycie odpowiednich funkcji filtrujacych
jak w przyktadzie, gdzie chcemy uwidoczni¢ tylko wezly typu Comment:

Filter filter = new ContentFilter();

Filter.setCommentVisible (true) ;
List content = elem.getContent (filter);

Klasy pakietu org.jdom.transform

Typ Nazwa Opis
Klasy JDOMResult Przechowuje wynik transformacji XSLT w postaci
dokumentu JDOM
JDOMSource Stanowi zrodto dokumentu JDOM dla transformacji
XSLT

Nastepujacy przyktad pokazuje jak zastosowac transformacje XSLT do dokumentu
JDOM 1 uzyska¢ wynik w postaci innego dokumentu JDOM:

public static Document transform(Document in, String stylesheet)
throws JDOMException {

try {

Transformer transformer =
TransformerFactory.newInstance () .newTransformer (new
StreamSource (stylesheet));

JDOMResult out = new JDOMResult () ;
transformer.transform(new JDOMSource (in), out);
return out.getDocument () ;
}
catch (TransformerException e) {
throw new JDOMException ("XSLT Transformation failed", e);
}
}

Nastgpny program prezentuje przetwarzanie dokumentu XML za pomoca
interfejséw JDOM. Do sformatowania wynikow przetwarzania uzyto
obiektu XMLOutputter.

import Jjava.io.*;

import org.jdom.*;
import org.jdom.input.*;
import org.jdom.output.*;

import org.w3c.dom.*;
import org.xml.sax.*;

import Jjavax.xml.parsers.*;

public class JDOM ({

public static void main (String args [])
throws
IOException, JDOMException, ParserConfigurationException, SAXException

{
int index=0;
index=Integer.parselnt (args([0]);

String xmlFile="";

// nazwy plikéw XML
String[] file = {"item.xml", "chessboard.xml","contents.xml"};

try {

// pobranie $ciezki pliku do przetworzenia
xmlFile = "file:\\" + new File(file[index]) .getAbsolutePath () ;

System.out.println(xmlFile) ;

}

catch (Exception e) { e.printStackTrace(); }
System.out.println();

System.out.println (
"### budowanie dokumentu JDOM za pomoca SAXBuilder z pliku XML "
)i

// budowanie dokumentu JDOM za pomoca SAXBuilder z pliku XML
saxDocument (xmlFile) ;

System.out.println();

// budowanie dokumentu JDOM za pomoca DOMBuilder z dokumentu DOM
System.out.println(

"### budowanie dokumentu JDOM za pomoca DOMBuilder z dokumentu DOM "
);

domDocument (xmlFile) ;
System.exit (0);

}//main ()

public static void saxDocument (String fileName)

throws IOException, JDOMException

{
//utworzenie SAXBuilder bez sprawdzania poprawnosci dokumentu
SAXBuilder builder = new SAXBuilder (false);

//utworzenie obiektu typu JDOM Document
org.jdom.Document doc = builder.build(fileName) ;

//wydrukowanie dokumentu wyjs$ciowego w formacie XML
printDocument (doc) ;

}

public static void domDocument (String fileName)
throws
ParserConfigurationException, SAXException, IOException, JDOMException
{
//utworzenie fabryki
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

//utworzenie obiektu DocumentBuilder
DocumentBuilder build = dbf.newDocumentBuilder () ;

//utworzenie obiektu typu DOM-Document o strukturze drzewa
org.w3c.dom.Document domDoc = build.parse(fileName) ;

//brak sprawdzania poprawnos$ci dokumentu
DOMBuilder builder = new DOMBuilder (false) ;

//utworzenie obiektu typu JDOM-Document
org.jdom.Document jdomDoc = builder.build (domDoc) ;

//wydrukowanie dokumentu wyjsciowego w formacie XML
printDocument (jdomDoc) ;

}

public static void printDocument (org.jdom.Document doc)throws IOException

{
XMLOutputter fmt = new XMLOutputter();

System.out.println(

fmt.output (doc, System.out) ;

System.out.println(

}//printDocument ()

}//class JDOM

Obiekt XMLOutputter jest szczegdlnie uzyteczny gdy nie mamy gotowego
dokumentu XML lecz tworzymy go dynamicznie od podstaw.

Tworzenie dokumentu od podstaw i wyprowadzanie w postaci sformatowanej do
strumienia standardowego 1 do pliku ilustruje ponizszy program.

import java.io.*;

import org.jdom.DocType;

import org.jdom.Document;

import org.jdom.Element;

import org.jdom.JDOMException;
import org.jdom.Namespace;

import org.jdom.output.XMLOutputter;

class XMLGenerator {
public static void main(String[] args) {

//uzyskanie obiektu Namespace
Namespace ns = Namespace.getNamespace ("JavaxXML",
"http://www.pjwstk.edu.pl/javaxml/") ;

// utworzenie korzenia pustego drzewa
Element root = new Element ("drzewo-rodowe", ns);
Document doc = new Document (root) ;

//tworzenie wezldéw i dodawania na odpowiednich poziomach
Element dziadek=new Element ("dziadek",ns) ;
dziadek.setAttribute ("wiek","80") .addContent ("Jan") ;
root.addContent (dziadek) ;

Element ojciec=new Element ("ojciec",ns) ;
ojciec.setAttribute ("wiek","50") .addContent ("Kazimierz") ;
dziadek.addContent (ojciec) ;

Element syn=new Element ("syn",ns) ;
syn.setAttribute ("wiek","20") .addContent ("Ryszard") ;
ojciec.addContent (syn) ;

Element corka=new Element ("corka",ns) ;
corka.setAttribute ("wiek","18") .addContent ("Katarzyna") ;
ojciec.addContent (corka) ;

try |
//konfiguracja obiektu formatujacego: 2 spacje wcieé,nowa linia
XMLOutputter fmt = new XMLOutputter (" ",true);

//wydrukowanie na konsole sformatowanego dokumentu
fmt.output (doc, System.out) ;

//wydrukowanie do pliku sformatowanego dokumentu
FileOutputStream fos = new FileOutputStream("drzewo.xml");
fmt.output (doc, fos);

}

catch (IOException e) {e.printStackTrace ()}

}//main ()

}//class XMLGenerator

zawarto$¢ pliku drzewo.xml po zadzialaniu programu

<?xml version="1.0" encoding="UTF-8"?>
<JavaXML:drzewo-rodowe xmlins:JavaXML="http://www.pjwstk.edu.pl/javaxml/"'>
<JavaXML:dziadek wiek="80">
Jan
<JavaXML.:ojciec wiek="50">
Kazimierz
<JavaXML:syn wiek="20">Ryszard</JavaXML:syn>
<JavaXML:corka wiek="18">Katarzyna</JavaXML:corka>
</JavaXML.:ojciec>
</JavaXML:dziadek>

</JavaXML:drzewo-rodowe>

4.6. Zastosowanie JAXP

Stosowanie interfejsow SAX i DOM wymaga importowania i odwotywania si¢ do

klas parsera danego producenta, a za tym idzie przy zmianie parsera wymaga
zmiany kodu i rekompilacji.

Wyjsciem z tej sytuacji jest stosowanie interfejsu JAXP (Java API for XML
Parsing).Tutaj klase parsera definiujemy za pomoca wlasciwosci systemowe;j
"javax.xml.parsers.SaxParserFactory" lub

"javax.xml.parsers.DocumentBuilderFactory" przy uzyciu opcji -D w linii komend
lub System.setProperty() w kodzie Javy. Zmiana implementacji parsera wymaga

tylko zmiany tej wlasciwosci.
Podstawowy pakiet JAXP to javax.xml.parsers.

Interfejsy i klasy pakietu javax.xml.parsers

[Typ | Nazwa | Opis

DocumentBuilderFactory Tworzenie egzemplarzy
DocumentBuilder;

Klasy wlaczenie/wylaczenieobstugi przestrzeni
nazw lub sprawdzania poprawnosci
DocumentBuilder Implementowana przez parser DOM,;
przetwarzanie niezaleznie od producenta
SAXParserFactory Tworzenie egzemplarzy SAXParser;

wlaczenie/wylaczenie obstugi przestrzeni
nazw lub sprawdzania poprawnosci

SAXParser Implementowana przez parser SAX;
przetwarzanie niezaleznie od producenta
Klasy ParserConfigurationException | Blad zgloszenia pobrania parsera gdy
podane ustawienia sg niewlasciwe
wyjatkow | FactoryConfigurationError Nie jest mozliwe utworzenie egzemplarza
Klasy

Tworzenie
egzemplarzy DocumentBuilderFactory lub SAXParserFactory mozliwe jest za
pomocg statycznej metody newlnstance() z tych klas.

Metoda ta uzywa nastepujacego porzadku poszukiwania klasy implementujacej do
zatadowania do JVM:

o Sprawdza
wlasciwosé systemowa '‘javax.xml.parsers.DocumentBuilderFactory/S
AXParserFactory"

« korzysta z pliku konfiguracyjnego
"jre/lib/jaxp.properties' zawierajacego kwalifikowana nazwe
klasy = implementujace;j.

« uruchamia Services API do poszukiwania nazwy klasy w plikach .jar
dostepnych na Sciezce Kklas.

o stosuje domyslng instancje¢ klasy dostepna na platformie.

Porzadek ten nalezy uwzglednia¢ chcac uzyskac dziatanie okreslonego parsera.

Ponizszy program pokazuje wykorzystanie klas JAXP do przetwarzania
niezaleznego od producenta w modelu SAX.

import Jjava.io.*;

import java.util.ArrayList;
import java.util.Hashtable;
import java.util.Enumeration;

import org.xml.sax.*;
import org.xml.sax.helpers.*;

//import klas JAXP
import Jjavax.xml.parsers.SAXParserFactory;
import Jjavax.xml.parsers.SAXParser;

class SAX JAXP {

public static void main (String args []) throws IOException {
int index = 0;
index = Integer.parselnt(args[0]);

// nazwy plikéw XML
String[] file = {"item.xml","chessboard.xml","contents.xml"};

try {
// pobranie $ciezki pliku do przetworzenia
String xmlResource = "file:\\" + new
File(file[index]) .getAbsolutePath () ;

System.out.println (xmlResource) ;

// utworzenie obiektu SAXParserFactory
SAXParserFactory spf = SAXParserFactory.newlInstance();

// utworzenie obiektu SAXParser
SAXParser sp = spf.newSAXParser();

System.out.println ("parser = " + sp);

//obstuga przestrzeni nazw
spf.setNamespaceAware (true) ;

// utworzenie obiektu SAXHandler do obstugi zdarzen
SAXHandler handler = new SAXHandler () ;

//uruchomienie analizy z podana obstuga zdarzeh
sp.parse (xmlResource, handler);

// pobranie kolekcji wynikowych
ArrayList[] tagData=handler.getArrays();

// wydrukowanie zawartosci kolekcji
System.out.println("----Znaczniki i dane znacznikéw---------—-

for(int i=0;i<tagData[0].size () ;i++) {

System.out.println ("<"+tagData[0].get (i)+">"+"
"t+tagData[l].get (1))
}
}

catch (Exception e) { e.printStackTrace(); }
System.exit (0);

}
}//class SAX JAXP

class SAXHandler extends DefaultHandler {

//DefaultHandler -

//puste implementacje ContentHandler,ErrorHandler,DTDHandler,EntityResolver

private Locator locator;

// utworzenie dwéch kolekcji typu Arraylist do nazw znacznikéw i danych
private ArrayList[] list=new ArrayList[]{new ArrayList(),new
ArrayList () };

private String currentElement = null;
private String currentData = null;

public void setDocumentLocator (Locator locator)
{
this.locator = locator;

}

public void startDocument () throws SAXException
{
System.out.println ("==== start
document:line="+locator.getLineNumber ()) ;

}

public void endDocument () throws SAXException

{

System.out.println ("=== stop document:line="+locator.getLineNumber ())

}

//napotkano instrukcje przetwarzania PI
public void processingInstruction(String target,String data)
throws SAXException {

System.out.println ("PI: target="+target+" data="+data);
}
//poczatek odwzorowywania przedrostka przestrzeni nazw
public void startPrefixMapping(String prefix,String uri)
throws SAXException {

System.out.println ("prefix = "+prefix+":"+uri);

}

//koniec odwzorowywania przedrostka przestrzeni nazw
public void endPrefixMapping (String prefix)
throws SAXException {

System.out.println ("prefix =" + prefix);

}

// metoda dostepu do przetworzonych wartosci-obiekty ArrayLlist
public ArraylList[] getArrays()
{

return list;

}

// metoda wywolywana kiedy analizowany jest nowy element

public void

startElement (String nsUri,String localName, String tag, Attributes attrs)
throws SAXException {

//zapamietanie etykiety nowego elementu

currentElement = tag;
System.out.println ("TAG =" + taqg);

for (int i=0;i<attrs.getLength () ;i++) {

System.out.println("line = " + locator.getLineNumber ()+
": atrybut " + attrs.getQName (i) + "=" + attrs.getValue(i));
}
System.out.println("data for " + tag + " tag" + ":" + currentData);

}

// informacja o biatych znakach

public void ignorableWhitespace(char[] ch,int start,int end)
throws SAXException

{

}

// wywolywana po znalezieniu danych w elemencie
public void characters(char[] ch, int start, int length)
throws SAXException {

//utworzenie tancucha ze znakdédw znalezionych w elemencie

currentData = new String(ch, start, length).trim();
if (currentData.equals(""))currentData = null;
if (currentData != null) {

list[0] .add (currentElement) ;
list[1l].add(currentData) ;

}

// wywolywana po znalezieniu znacznika konica elementu
public void endElement (String nsUri, String localName, String tagEnd)
throws SAXException
{
// znacznik konca elementu tagEnd
System.out.println ("TAG-END = " + tagEnd);

}

// gdy parser pomija encje
public void skippedEntity(String name) throws SAXException

{
System.out.println ("skipped entity");

//ostrzezenie - niepoprawnos$é sktadniowa dokumentu,
//niezgodnos$é z definicjami DTD

public void warning (SAXParseException e)

throws SAXException

{

System.out.println ("*warning:"+e.getMessage () +"/line="+e.getLineNumber ()) ;

}

//btad niekrytyczny - niezgodnos$é ze specyfikacja XML
public void error (SAXParseException e)

throws SAXException

{

System.out.println("*error:"+e.getMessage () +"/line="+e.getLineNumber ()) ;

}

//btad krytyczny - niepoprawne formatowanie dokumentu
//zatrzymanie procesu przetwarzania

public void fatalError (SAXParseException e)

throws SAXException

{
System.out.println ("*fatal

error:"+e.getMessage () +"/line="+e.getLineNumber ()) ;

}//class SAXHandler

Ponizszy program pokazuje wykorzystanie klas JAXP do przetwarzania
niezaleznego od producenta w modelu DOM.

import java.io.*;
import org.w3c.dom.*;
import org.xml.sax.*;

//import klas JAXP
import javax.xml.parsers.*;

class DOM JAXP {

public static void main (String args []) throws IOException ({
int index = 0;
index = Integer.parselnt(args[0]);

// nazwy plikéw XML
String[] file = {"item.xml","chessboard.xml","contents.xml"};

try {
// pobranie $ciezki pliku do przetworzenia
String xmlResource = "file:\\" +
new File(file[index]) .getAbsolutePath();

System.out.println (xmlResource) ;

// utworzenie obiektu DocumentBuilderFactory
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

//utworzenie obiektu DOMBuilder
DocumentBuilder builder = dbf.newDocumentBuilder () ;

System.out.println ("parser= " + builder);

//utworzenie obiektu typu DOM-Document o strukturze drzewa
Document doc = builder.parse(xmlResource) ;

//rekurencyjne wyswietlenie zawartosci drzewa
System.out.println();

printTree (doc,"");

}

catch (Exception e) { e.printStackTrace(); }
System.exit (0);

}//main ()

public static void printTree (Node node, String insets)

{
switch (node.getNodeType ()) {

case Node.DOCUMENT NODE:
//DOM-Level2 nie udostepnia deklaracji XML
System.out.println ("<xml version=\"1.0\">\n");

Document doc=(Document)node;
printTree (doc.getDocumentElement (), "") ;
break;

case Node.ELEMENT NODE:

String name=node.getNodeName () ;
System.out.print (insets+"<"+name) ;
NamedNodeMap attributes=node.getAttributes();

for (int i1i=0;i<attributes.getLength () ;i++) {
Node current=attributes.item(i);
System.out.print (" "+current.getNodeName () +
"=\""+current.getNodeValue () +"\"");

}

System.out.print (">"); //formatowanie

//rekurencyjne przetwarzanie elementéw potomnych
NodelList children=node.getChildNodes () ;

if (children!=null)
for(int i=0;i<children.getLength () ;i++)
printTree (children.item(i),insets + " ");

break;

case Node.TEXT NODE:
//wyswietlenie danych tekstowych
System.out.print (node.getNodeValue ()) ;
break;

case Node.CDATA SECTION NODE:
//wyswietlenie danych tekstowych z bloku CDATA

System.out.print (node.getNodeValue ()) ;
break;

case Node.PROCESSING INSTRUCTION NODE:
//wyéwietlenie instrukcji przetwarzania PI
System.out.print ("<?"+node.getNodeName () +
" "+node.getNodeValue()+ "?2>");

break;
case Node.ENTITY REFERENCE NODE:
//wyéwietlenie encji

break;

case Node.DOCUMENT TYPE NODE:
//wyéwietlenie deklaracji DTD
break;
}//switch
}//printTree ()

}//class DOM_JAXP

4.7. Przetwarzanie wzgledem DTD
Specyfikacja DTD

Zadanie definicji DTD jest okreslenie sposobu formatowania danych.
Zdefiniowany musi by¢ kazdy element dozwolony w dokumencie XML, sposoby
zagniezdzania elementow, atrybuty oraz zewngtrzne encje.

Konstrukcje DTD umozliwiajg :
a) okreslanie elementow

<IELEMENT [nazwa elementu] [definicja/typ elementu]>

typ ANY oznacza element mogacy zawiera¢ dane tekstowe, inne elementy oraz
kombinacje obu poprzednich

typ EMPTY oznacza element pusty

typ (#PCDATA) oznacza typ przetwarzanych danych tekstowych

b) okreslanie sposobu zagniezdzania elementow

<IELEMENT [nazwa elementu] ([zagniezdzony element] ,[zagniezdZzony
element]...)>

C) grupowanie elementow, operatory rekurencji (wielokrotne
wystepowanie, powtorzenia)

<IELEMENT [nazwa elementu] ((grupalElementl,grupalElement2),
(grupa2Elementl,grupa2Element2))>

Do elementow jak rowniez do kazdej grupy elementow mozna stosowac operatory
rekurencji okre$lajacy ile razy ma pojawic si¢ dany element czy dana grupa
elementow.

Operator rekurencji | Opis operatora

Domyslnie Musi wystapi¢ doktadnie raz

? Musi wystapi¢ raz albo wcale

+ Musi wystapi¢ przynajmniej raz (1...n razy)

* Moze wystapi¢ dowolna liczbe razy(0...n razy)

d) definiowanie atrybutow i typy atrybutéow

<!ATTLIST [element zamykajacy] [nazwa atrybutu] [typ] [modyfikator]|>
typ CDATA oznacza atrybut o wartosci tekstowe]

typ wyliczeniowy (warto$¢1|warto$c2|...) umozliwia okreslenie wartos$ci
atrybutu

modyfikatory okreslaja czy atrybut jest wymagany w danym elemencie :
modyfikator #IMPLIED — atrybut nie jest wymagany
modyfikator #REQUIRED — atrybut jest wymagany

modyfikator #FIXED — okresla ze uzytkownik nie moze zmieni¢ warto$ci
atrybutu

e) okreslanie encji

<IENTITY [nazwa encji] ”[znaki podstawiane/identyfikator]|”>

Konstrukcja ta jak wida¢ pozwala poda¢ zaréwno znaki podstawiane pod nazwe
encji jak i odwotanie do pliku zewnetrznego.W tym ostatnim przypadku trzeba
podac adres URI (np. URL) zasobu.

f) okreSlanie encji nieprzetwarzanej

Encje nieprzetwarzane wystepuja w dokumentach XML odwotujacych si¢ do
danych binarnych (np.plikow multimedialnych).

Poniewaz parser nie potrafi przetwarza¢ plikdéw binarnych powinien te dane
pozostawi¢ w postaci nieprzetworzone;.

Przyktadowo jezeli w dokumencie XML mamy znacznik z encja:
<mylmage>&Image</mylmage>

to w dokumencie DTD umieszczamy nastepujaca konstrukcje:
<IENTITY Image SYSTEM "images/duke.gif'* NDATA gif>

Wystapienie tej deklaracji w dokumencie DTD spowoduje wywotanie wsteczne
funkcji unparsedEntityDecl() z interfejsu DTDHandler.

Niezbednym warukiem do tego jest przetwarzanie dokumentu przez parser z
zarejestrowang implementacja DTDHandler.

g) deklaracje notacji

Deklaracje notacji skojarzone sg z encjami nieprzetwarzanymi i dla powyzszej
deklaracji ma postac :

<INOTATION gif SYSTEM "*http//www.gif.com"*>

Deklaracja ta wigze typ nieprzetwarzanej encji(gif) z identyfikatorem URI danego
typu.

Wystapienie tej deklaracji w dokumencie DTD spowoduje wywotanie wsteczne
funkcji notationDecl() z interfejsu DTDHandler.

Oczywistym warunkiem tego jest przetwarzanie dokumentu przez parser z
zarejestrowang implementacjg DTDHandler.

Podajemy teraz przyktady dokumentow DTD. W przyktadach tych czytelnik
powinien rozpozna¢ omawiane konstrukcje DTD.

Dokument chessboard.dtd

<IELEMENT CHESSBOARD (WHITEPIECES, BLACKPIECES)>
<IENTITY % pieces "KING, QUEEN?, BISHOP?, BISHOP?, ROOK?,
ROOK?, KNIGHT?, KNIGHT?, PAWN?, PAWN?, PAWN?, PAWN?,
PAWN?, PAWN?, PAWN?" >

<IELEMENT WHITEPIECES (%pieces;)>

<IELEMENT BLACKPIECES (%pieces;)>

<IELEMENT POSITION EMPTY>

<IATTLIST POSITION COLUMN (A|B|C|D|E|F|G|H) #REQUIRED ROW
(1]2/3/4/5/6/7|8) #REQUIRED >

<IELEMENT KING (POSITION)>
<IELEMENT QUEEN (POSITION)>
<IELEMENT BISHOP (POSITION)>
<IELEMENT ROOK (POSITION)>
<IELEMENT KNIGHT (POSITION)>

<IELEMENT PAWN (POSITION)>

PAWN?,

Dokument contents.dtd

<IELEMENT JavaXML:Book (JavaXML.:Title, JavaXML.:Contents,
JavaXML:Copyright)>

<IATTLIST JavaXML:Book xmlns:JavaXML CDATA #REQUIRED >
<IELEMENT JavaXML.:Title (#PCDATA)>

<IELEMENT JavaXML.:Contents ((JavaXML:Chapter+) (JavaXML:Chapter+,
JavaXML:SectionBreak?)+)>

<IELEMENT JavaXML:Chapter (JavaXML:Heading? JavaXML:Topic+)>

<IATTLIST JavaXML:Chapter focus (XML|Java) "Java" >

<IELEMENT JavaXML:Heading (#PCDATA)>

<IELEMENT JavaXML:Topic (#PCDATA)>

<IATTLIST JavaXML:Topic subSections CDATA #IMPLIED >
<IELEMENT JavaXML:SectionBreak EMPTY>

<IELEMENT JavaXML:Copyright (#PCDATA)>

<IENTITY OReillyCopyright
SYSTEM "http://www.oreilly.com/catalog/javaxml/docs/copyright.xml*>

4.7.1. Przetwarzanie wzgledem DTD w modelu SAX

Ponizej przedstawiono przyktadowy program do analizy XML w modelu SAX ze
sprawdzaniem poprawnosci wedtug definicji DTD. Do utworzenia instancji parsera
wykorzystano biblioteki JAXP1.0.

import Jjava.io.*;

import java.util.ArrayList;
import java.util.Hashtable;
import java.util.Enumeration;

import org.xml.sax.*;
import org.xml.sax.helpers.*;

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;

public class SAX Valid DTD {
public static void main (String args []) throws IOException {

// nazwy plikdéw XML
String[] file={"item.xml", "chess.xml", "contents.xml"};
try {
// pobranie $ciezki pliku do przetworzenia
String xmlResource = "file:\\" + new
File(file[2]) .getAbsolutePath();
System.out.println (xmlResource) ;

// utworzenie obiektu SAXParserFactory
SAXParserFactory spf = SAXParserFactory.newInstance();

//sprawdzanie poprawnosci dokumentu XML
spf.setValidating (true) ;

// utworzenie obiektu SAXParser
SAXParser sp = spf.newSAXParser();

//obstuga przestrzeni nazw
spf.setNamespaceAware (true) ;

// utworzenie obiektu SAXHandler do obstugi zdarzen
SAXHandler handler = new SAXHandler();

//uruchomienie analizy z podana obstuga zdarzen
sp.parse (xmlResource, handler);

// pobranie kolekcji wynikowych
ArrayList[] tagData=handler.getArrays();

// wydrukowanie zawarto$ci kolekcji
System.out.println("\n----Znaczniki i dane znaczniké6w------—---- U

for (int i=0;i<tagDatal[0].size () ;i++) {
System.out.println ("<"+tagDatal[O0].get (1) +">"+"
"t+tagData[l].get (1))

}
}

catch (Exception e) { e.printStackTrace(); }
System.exit (0);

class SAXHandler extends DefaultHandler {
//...tak jak w programie SAX JAXP w punkcie 4.6

}//class SAXHandler

4.7.2. Przetwarzanie wzgledem DTD w modelu DOM

import Jjava.io.*;
import org.w3c.dom.*;
import org.xml.sax.*;

import javax.xml.parsers.*;

class DOM Valid DTD {
public static void main (String[] args) throws IOException {

// nazwy plikéw XML
Stringl[] file={"item.xml", "chess.xml", "contents.xml"};

try {
// pobranie $ciezki pliku do przetworzenia
String xmlResource = "file:\\" + new File(file[2]) .getAbsolutePath();

System.out.println (xmlResource) ;

// utworzenie obiektu DocumentBuilderFactory
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

//sprawdzenie poprawnos$ci dokumentu XML
dbf.setValidating (true) ;

//utworzenie obiektu parsera
DocumentBuilder builder=dbf.newDocumentBuilder () ;

//utworzenie wtasnej obstugi bieddw
ErrorHandler eh=new MyHandler();
//zarejestrowanie wltasnej obstugi bleddw
builder.setErrorHandler (eh) ;
System.out.println();
//utworzenie obiektu typu DOM-Document o strukturze drzewa
Document doc=builder.parse (xmlResource) ;
//rekurencyjne wyswietlenie zawartosci drzewa
printTree (doc) ;
}
catch (Exception e) { e.printStackTrace(); }
System.exit (0);
}//main ()
public static void printTree (Node node) {
//...tak jak w programie DOM JAXP w punkcie 4.6
}//printTree ()
}//class DOM Valid DTD
class MyHandler implements ErrorHandler ({

//...tak jak w programie DOM JAXP w punkcie 4.6

}//class MyHandler

4.7.3. Przetwarzanie wzgledem DTD w modelu JDOM

W tym przypadku wywotujemy metode setValidating(true) z klasy
fabryki DocumentBuilderFactory.

import Jjava.io.*;

import org.jdom.*;

import org.jdom.input.*;
import org.jdom.output.*;
import org.w3c.dom.*;

import org.xml.sax.*;

import Jjavax.xml.parsers.*;

class JDOM Valid DTD {

public static void main (String[] args)
throws
IOException, JDOMException, ParserConfigurationException, SAXException
{
String xmlFile="";
// nazwy plikéw XML

String[] file={"chess.xml","contents.xml"};

try {

// pobranie $ciezki pliku do przetworzenia

xmlFile = "file:\\" + new File(file[l]).getAbsolutePath();

System.out.println(xmlFile);
}

catch (Exception e) { e.printStackTrace(); }

System.out.println();
System.out.println(
"###4# 44+ budowanie dokumentu JDOM za pomocag SAXBuilder z pliku XML "

)

// tworzenie dokumentu JDOM za pomocag SAXBuilder z pliku XML
saxDocument (xmlFile) ;

System.out.println();

// budowanie dokumentu JDOM za pomoca DOMBuilder z dokumentu DOM
System.out.println(
"####### budowanie dokumentu JDOM za pomocag DOMBuilder z dokumentu DOM

) i

domDocument (xmlFile) ;
System.exit (0);
}//main ()

public static void saxDocument (String fileName)

throws IOException, JDOMException

{
//utworzenie SAXBuilder ze sprawdzaniem poprawnosci dokumentu
SAXBuilder builder=new SAXBuilder (true);

//utworzenie obiektu typu JDOM Document
org.jdom.Document doc = builder.build(fileName) ;

//wydrukowanie dokumentu wyjsciowego w postaci kodu XML
printDocument (doc) ;
}
public static void domDocument (String fileName)
throws ParserConfigurationkException, SAXException, IOException, JDOMException
{

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

//sprawdzenie poprawnos$ci wzgledem DTD
dbf.setValidating(true) ;

DocumentBuilder build=dbf.newDocumentBuilder () ;

//klasa wewnetrzna lokalna do wlasne] obsitugi bieddéw
class MyHandler implements ErrorHandler {

//ostrzezenie - niepoprawnosc skladniowa dokumentu,
//niezgodnoéé z definicjami DTD

public void warning(SAXParsekException e)

throws SAXException

{

System.out.println ("* ***xxxkdkx*ywarning: line="+e.getLineNumber ());

}

//btad niekrytyczny - niezgodnosé¢ ze specyfikacja XML
public void error (SAXParseException e)

throws SAXException

{

System.out.println ("*********error: line="+e.getLineNumber()) ;

}

//btad krytyczny - niepoprawne formatowanie dokumentu
//zatrzymanie procesu przetwarzania

public void fatalError (SAXParseException e)

throws SAXException

{

System.out.println ("**x*x*x*x****fatgl error:
line="+e.getLineNumber ()) ;
}
}//class MyHandler

ErrorHandler eh=new MyHandler () ;

//zarejestrowanie wltasnej obstugi bleddw
build.setErrorHandler (eh) ;

//utworzenie obiektu typu DOM-Document o strukturze drzewa
org.w3c.dom.Document domDoc = build.parse (fileName) ;

//sprawdzanie poprawnosci dokumentu
DOMBuilder builder = new DOMBuilder (true) ;

//utworzenie obiektu typu JDOM-Document
org.jdom.Document jdomDoc = builder.build (domDoc) ;

//wydrukowanie dokumentu wyjsciowego w postaci kodu XML
printDocument (jdomDoc) ;

}//domDocument ()
public static void printDocument (org.jdom.Document doc)throws IOException
{

XMLOutputter fmt = new XMLOutputter():;

System.out.println(

fmt.output (doc, System.out) ;

System.out.println(

}//printDocument ()
}//class JDOM Valid DTD

4.8. Przetwarzanie wzgledem XML Schema
Specyfikacja XML Schema

W przeciwienstwie do dokumentu DTD, ktéry korzysta z ze specyficznego formatu
opisu elementéw, XML Schema stosuje format dokumentu XML.

Konstrukcje XML Schema umozliwiajg :

a) okreslanie przestrzeni nazw dokumentu XML i przestrzeni nazw
schematu

<xsd:schema targetNamespace="http://www .java.sun.com/javaxml*
xmlns:xsd="http:// www.w3.org./2003/XMLSchema*

xmlns:JavaXML="http://www.java.sun.com/javaxml‘>
b) okreslanie elementow i sposobu ich zagniezdzania

————— > okreslanie elementow jawnych (nazwanych)
<element name="nazwa elementu” type="typ elementu” [opcje]|>
w nazwie elementu nie powinno by¢ przedrostka przestrzeni nazw

"typ elementu" okresla typ predefiniowany lub typ zdefiniowany przez
uzytkownika

Typy predefiniowane :

Typ Podtypy Znaczenie
String NMTOKEN, Lancuchy znakow
Language
Boolean --- Binarna warto$¢
Float 32 bitowy typ zmiennoprzecinkowy
Double 64 bitowy typ zmiennoprzecinkowy

Decimal Integer Zapis dziesietny

Timelnstant Data i czas

TimeDuration Czas trwania

Recurringlnstant | Date,time Czas powtarzajacy sie przez okres timeDuration
Binary Dane w postaci binarnej

Uri Enumeration Identyfikator zasobow

Np. <element name="title” type="string” />

Typy zdefiniowane przez uzytkownika okres§lamy za pomocg
elementu complexType:

<complexType name="[nazwa typu]”>
<[specyfikacja elementu]>

<[specyfikacja elementu]>

</complexType>
---> okreslanie elementow niejawnych (nienazwanych)

<complexType>

</complexType>

C) grupowanie elementow, operatory rekurencji (wielokrotne
wystepowanie, powtorzenia)

Do okreslania ile razy ma pojawic¢ si¢ element uzywa si¢
atrybutow minOccurs i maxOccurs:

<element name="[nazwa]” type="[typ]” minOccurs="]ile]”
maxQOccurs="][ile]”>

wartosci domyslne minOccurs = 1, maxOccurs= *(zero lub wiecej).
d) definiowanie atrybutéw, typu atrybutéw i warto$ci domysInych

Atrybuty w XMLSchema definiuje si¢ za pomocg elementu attribute

<attribute name="[nazwa atrybutu” type=""[typ atrybutu]” [opcje
atrybutu]>

Do okreslania czy dany atrybut ma si¢ pojawi¢ stuzy minOccurs (warto$¢
domys$lna=0).

Do okres$lania warto$ci domyslnej atrybutu stuzy atrybut default
Np. <attribute name="temat” type="string” default="java” / >
Wyliczenia mozliwych wartosci atrybutu dokonujemy za pomoca

elementu simpleType podajac jego typ bazowy za pomocg stowa
kluczowego base i elementow enumeration

np .
<attribute name="temat” default="java”>
<simpleType base="string”>
<enumeration value="xml” />
<enumeration value="javaxml” />
</simple type>
</attribute>

e) okreslanie encji

<IENTITY [nazwa encji] ”[znaki podstawiane/identyfikator]|”>

Konstrukcja ta jak wida¢ pozwala poda¢ zard6wno znaki podstawiane pod nazwe
encji jak i odwotanie do pliku zewnetrznego. W tym ostatnim przypadku trzeba

podac¢ identyfikator URI (np. URL) zasobu.

Przyktad dokumentu JavaXML.xsd zawg¢zajacego

dokument contents.xml wedlug XML Schema. Czytelnik powinien rozpozna¢ w

nim konstrukcje charakterystyczne dla XML Schema.
Dokument JavaXML.xsd

<?xml version="1.0"?>

<schema targetNamespace="http://www.oreilly.com/catalog/javaxml/"

xmlins="http://www.w3.0rg/1999/XMLSchema"
xmlins:JavaXML="http://www.oreilly.com/catalog/javaxml/">
<element name="Book" type="JavaXML:BookType" />
<complexType name="BookType">
<element name="Title" type="string" />
<element name="Contents" type="JavaXML:ContentsType" />
<element name="Copyright" type="string" />
</complexType>
<complexType name="ContentsType">
<element name="Chapter" maxOccurs="*">
<complexType>
<element name="Heading" type="string" minOccurs="0" />
<element name="Topic" maxOccurs="*">
<complexType content="string">
<attribute name="subSections" type="integer" />
</complexType>
</element>
<attribute name="focus" default="Java">
<simpleType base="string">
<enumeration value="XML" />
<enumeration value="Java" />
</simpleType>
</attribute>

</complexType>

</element>
<element name="SectionBreak" minOccurs="0" maxOccurs="*">
<complexType content="empty" />
</element>
</complexType>
</schema>
zrodlo: http://www.oreilly.com/catalog/javaxml

Obecnie dostepny jest w Internecie pakiet JAXP w wersji 1.2 (JAXP1.2) ktory
obshuguje sprawdzanie poprawnosci zarowno wzgledem DTD, jak rowniez
wzgledem XMLSchema. Dotaczany jest do niego standardowo parser Xerces-J
obstugujacy XMLSchema.

Ponizszy przyktad pokazuje wykorzystanie bibliotek JAXP1.2 do przetwarzania
dokumentu XML ze sprawdzaniem poprawnosci wedtug DTD lub XMLSchema.

Ponizszy program stosuje biblioteki JAXP1.2 do obliczania ilo$ci elementow w
dokumencie XML:

Program stosujacy biblioteki JAXP1.2.Nalezy uruchomi¢ ten program i sprawdzi¢
czy wynik jest zgodny z przewidywaniami. Nalezy nastepnie dokona¢ celowych
zmian w dokumencie XML niezgodnych z arkuszem stylow i1 zaobserwowac
reakcje programu. Dla analizy ze sprawdzaniem poprawno$ci wzgledem
XMLSchema program ten nalezy uruchomic z argumentami: -xsdss personal.xsd
personal-schema.xml pamigtajac o umieszczeniu na $ciezce klas parsera Xerces-J
obstugujacego JAXP1.2.

//klasy JAXP
import javax.xml.parsers.*;

import org.xml.sax.*;
import org.xml.sax.helpers.*;

import Jjava.util.x*;
import java.io.*;

public class SAXLocalNameCount extends DefaultHandler ({

//state uzywane przez JAXP 1.2

static final String JAXP SCHEMA LANGUAGE =
"http://java.sun.com/xml/jaxp/properties/schemalLanguage";

static final String W3C_ XML SCHEMA =
"http://www.w3.0rg/2001/XMLSchema";

static final String JAXP SCHEMA SOURCE =

"http://java.sun.com/xml/jaxp/properties/schemaSource";

//tablica mieszania z parami (nazwa znacznika,liczba wystapien)
private Hashtable tags;

//na poczatku dokumentu tworzymy obiekt HashTable

public void startDocument () throws SAXException {
tags = new Hashtable();

}

// po napotkaniu nowego elementu pobieramy jego nazwe i sprawdzamy
// czy juz wystepuje w tablicy jezeli nie to dodajemy do mapy;
// jezeli juz wystepuje to dodajemy do mapy z aktualnym licznikiem
public void startElement (
String namespaceURI, String localName, String gName, Attributes atts

)
throws SAXException {

String key = localName;
Object value = tags.get (key);
if (value == null) {
// dodajemy nowa pare
tags.put (key, new Integer(l));
}

else {
// pobieramy warto$é licznika,zwiekszamy o 1 i dodajemy do mapy
int count = ((Integer)value).intValue();
count++;

tags.put (key, new Integer (count));
}
}

// na koncu dokumentu uzyskujemy iterator kluczy
// i drukujemy nazwy znacznikéw i liczby ich wystapien

public void endDocument () throws SAXException {
Enumeration e = tags.keys();
while (e.hasMoreElements()) {
String tag = (String)e.nextElement () ;
int count = ((Integer)tags.get(tag)) .intValue();
System.out.println("Local Name \"" + tag + "\" occurs " + count
+ " times");

}

//nazwe pliku zamieniamy na adres URL pliku
private static String convertToFileURL (String filename) {

String path = new File(filename) .toURL() .toString();
return "file:" + path;

}
// w przypadku blednych argumentéw
// informacja o parametrach wywolania programu z linii komend

private static void usage () {
System.err.println ("Usage: SAXLocalNameCount [-options] <file.xml>");
System.err.println (" -dtd = DTD validation");
System.err.println(
" -xsd | -xsdss <file.xsd> = W3C XML Schema validation using xsi:
hints");
System.err.println(" 1in instance document or schema source

<file.xsd>");
System.err.println(

" -xsdss <file> = W3C XML Schema validation using schema source
<file>");
System.err.println (" -usage or -help = this message");
System.exit (1) ;
}

static public void main(String[] args) throws Exception {

String filename = null;

boolean dtdvalidate = false; //czy poprawno$¢ wediug DID

boolean xsdvValidate = false; //czy poprawnos$é¢ wediug informacji w
dokumencie XML

String schemaSource
arkusza XML Schema

null; //czy poprawnos$é wedlug podanego

// analiza argumentdéw wywoltania
for (int 1 = 0; i1 < args.length; i++) {

if (args([i].equals("-dtd")) dtdvalidate = true;
else 1if (args[i].equals("-xsd")) xsdValidate = true;
else if (args[i].equals("-xsdss")) {
if (i == args.length - 1) usage();
xsdValidate = true;
schemaSource = args[++i];
}
else if (args[i].equals("-usage")) usage();
else if (args[i].equals("-help")) usage();
else {
filename = argsl[i];
if (1 !'= args.length - 1) usage();
}
}//for
if (filename == null) usage();

// utworzenie fabryki JAXP SAXParserFactory
SAXParserFactory spf = SAXParserFactory.newlInstance();

// wlaczenie rozpoznawania przestrzeni nazw.
spf.setNamespaceAware (true) ;

// ustawienie sprawdzania poprawnosci
spf.setValidating(dtdvValidate || xsdValidate);

// utworzenie parsera SAX
SAXParser saxParser = spf.newSAXParser();
System.out.println ("parser="+saxParser);

// ustawienie jezyka schematu
if (xsdvalidate) {
try {
saxParser.setProperty (JAXP SCHEMA LANGUAGE,
W3C_XML_SCHEMA) ;
}
catch (SAXNotRecognizedException x) {
// jezeli parser nie obsluguje JAXP1.2

System.err.println(
"Error: JAXP SAXParser property not recognized: "+
JAXP SCHEMA LANGUAGE
)
System.err.println ("Check to see if parser conforms to JAXP
1.2 spec.");

System.exit (1) ;

}

//ustawienie wtasciwos$ci dla zrdédia schematu
if (schemaSource != null) {
saxParser.setProperty (JAXP SCHEMA SOURCE, new

File (schemaSource)) ;

}

// uzyskanie obiektu XMLReader
XMLReader xmlReader = saxParser.getXMLReader () :;

// zarejestrowanie obstugi zawartosci
xmlReader.setContentHandler (new SAXLocalNameCount ());

// zarejestrowanie obstugi bleddéw z wydrukiem na konsole
xmlReader.setErrorHandler (new MyErrorHandler (System.err));

// dokonanie analizy dokumentu XML
xmlReader.parse (convertToFileURL (filename)) ;

}

// definicja obstugi bledéw i ostrzezen
private static class MyErrorHandler implements ErrorHandler

//informacje o bledach zapisywane do strumienia
private PrintStream out;

MyErrorHandler (PrintStream out) {
this.out = out;

}

//dostarcza informacji o wyjatkach w procesie parsowania
private String getParseExceptionInfo (SAXParseException spe) {

String systemId = spe.getSystemId()
if (systemId == null) systemId = "null";

String info = "URI=" + systemId +
" Line=" + spe.getLineNumber () +
": " + spe.getMessage();

return info;

}
// standardowe metody obstugi bleddéw

public void warning (SAXParseException spe) throws SAXException {
out.println ("Warning: " + getParseExceptionInfo (spe));

}

public void error (SAXParseException spe) throws SAXException {
String message = "Error: " + getParseExceptionInfo (spe);

throw new SAXException (message);

}

public void fatalError (SAXParseException spe) throws SAXException {
String message = "Fatal Error: " + getParseExceptionInfo (spe);
throw new SAXException (message);

zrédlo - Apache Software Foundation (http://www.apache.org/)

4.9. Transformacje XSLT

Transformacja XSLT (XSL Transformation) byta zdefiniowana przez W3C XSL
Working Group.

XSL (Extensible Stylesheet Language) stuzy do przeksztalcenia danych XML z
jednego formatu na inny za pomoca arkuszy styléw, ktore musza by¢ uprzednio
przygotowane. Dokument XSL jest dokumentem w formacie XML
wykorzystujacym konstrukcje XPath oraz obiekty formatujace w postaci
specjalnych znacznikow uzywanych przez procesor XSLT do zmiany formatu
danych.

Procesor XSLT, wykorzystujac arkusz styléw oraz dokument XML w postaci
drzewa, tworzy dokument w nowym formacie np. HTML.

Jako argumenty dla procesora XSLT podaje si¢ dokument XML z odwotaniem do
arkusza stylow, arkusz stylow XSL oraz plik w ktorym ma by¢ umieszczony wynik
transformacji.

Xpath (XML Path Language) okresla w jaki sposob zlokalizowa¢ okreslony
komponent dokumentu XML.

Z punktu widzenia Xpath dokument XML stanowi strukture drzewiastg . W
wezlach tego drzewa znajduje si¢ okreslone komponenty XML : elementy,
atrybuty, dane tekstowe. W celu zlokalizowania okreslonego komponentu XML
stosuje si¢ odwotania do weztéw drzewa XML poprzez okreslenie potozenia
danego wezla w drzewie.

Transformacje XSLT umozliwiaja w Javie pakiety javax.xml.transform,
javax.xml.transform.sax,javax.xml.transform.dom,
javax.xml.transform.stream.

Interfejsy i klasy pakietu javax.xml.transform

Pakiet dostarcza interfejsy i klasy do przetwarzania instrukcji
transformacyjnych XSL i dokonywania transformacji XSLT.

Typ

Nazwa

Opis

Interfejsy

ErrorListener

Nastuch ostrzezen i btgdow
przetwarzania

Result

Uzyskiwanie Informacji
potrzebnych do zbudowania
wynikowego drzewa transformacji

Source

Uzyskiwanie informacji
potrzebnych do dziatania jako
zrédta transformacji (dokumentu
XML lub instrukcji
transformacyjnych)

SourcelLocator

Uzyskiwanie Informacji o
wystepowaniu bledow w zrodle
transformacji

Templates

Reprezentacja przetwarzanych
instrukcji transformacyjnych

URIResolver

Rozpoznawanie identyfikatorow
URI w instrukcjach
transformacyjnych

Klasy

OutputKeys

Zawiera state tancuchowe
potrzebne do ustalania lub
pobierania wtasciwosci obiektu
typu Transformer lub Template

Transformer

Przetwarzanie drzewa zrodlowego
w drzewo wynikowe

TransformerFactory

Fabryka do tworzenia instancji
klasy Transformer

Klasy

Wyjatkow

TransformerConfigurationException

Nie mozna utworzy¢ instancji
klasy Transformer np. z powodu
btedow sktadniowych instrukcji

TransformerException

Ogo6lny btad transformac;ji;
informacje o btedzie poprzez
wywotanie
getMessageAndLocation()

TransformerFactoryConfigurationError

Blad konfiguracji instancji
TransformerFactory; klasa fabryki
transformacji nie znaleziona lub
nie mozna utworzy¢ jej
egzemplarza

Interfejsy i klasy pakietu javax.xml.transform.sax

Zawiera API specyficzne dla transformacji w modelu SAX2

| Typ

| Nazwa | Opis

Interfejsy TemplatesHandler Tworzenie obiektow typu Templates w oparciu
0 zdarzenia SAX2
TransformerHandler Tworzenie transformacji w oparciu o zdarzenia
SAX?2
Klasy SAXResult Pozwala na ustalenie obiektu ContentHandler
dla zdarzen SAX2 pochodzacych z procesu
transformacji
SAXSource Ustalenie obiektu XMLReader i InputSource

SAXTransformerFactory

rozszerza TransformerFactory, dostarczajac
metod do tworzenia instancji
TemplatesHandler, TransformerHandler,
XMLReader

Interfejsy i klasy pakietu javax.xml.transform.dom

Zawiera APl specyficzne dla transformacji w modelu DOM:

Typ Nazwa Opis
Interfejs DOMLocator | Wskazuje pozycje wezta w strukturze DOM; raport
bledow
Klasy DOMResult Okres$la drzewo wyjsciowe jako obiekt typu Node
DOMSource Okresla drzewo wejsciowe jako obiekt typu Node

Klasy pakietu javax.xml.transform.stream

Typ

Nazwa Opis

klasy

StreamResult

przechowuje wynik transformacji w odpowiednim
formacie (np.XML,HTML)

StreamSource

przechowuje zrodto transformacji jako strumien
znacznikow XML

import java.io.*;

import org.w3c.dom.*;

import org.xml.sax.*;

import javax

.xml.parsers.*;

//importy pakietdéw XSLT

import Jjavax
import javax
import javax
import javax

.xml.transform.*;
.xml.transform.sax.*;
.xml.transform.dom. *;
.xml.transform.stream. *;

public class XSLT {

public static void main (String args []) throws IOException {
int index = 1;
index = Integer.parselnt(args[0]);

// nazwy plikéw XML ,6XSL,6 HTML
String[] xmlFile = {"contents.xml","contents.xml" ,"contents.xml"};
String[] xslFile = {"contents.xsl","contentsA.xsl" ,"contentsB.xsl"};
String[] htmlFile =

{"contents.html", "contentsA.html", "contentsB.html"};

try {

// utworzenie obiektu TransformerFactory
TransformerFactory tf = TransformerFactory.newInstance();

//uzyskanie procesora XSLT
Transformer transformer = tf.newTransformer (
new SAXSource (new InputSource (xslFile[index])));

//utworzenie strumienia wysciowego dla wyniku transformacji
OutputStream out = new FileOutputStream(htmlFile[index]);

//dokonanie transformacji
transformer.transform/(

new SAXSource (new InputSource (xmlFile[index])),new
StreamResult (out)

) ;
System.out.println();

}

catch (Exception e) { e.printStackTrace(); }
System.exit (0);
}//main ()

}//class XSLT

Jak wida¢ zastosowanie interfejséw do transformacji XSLT jest bardzo proste.
Cala trudnos$¢ polega na przygotowaniu arkuszy XSL opisujacych na czym ma
polega¢ transformacja (zmiana formatu) dokumentu XML. Oméwimy zatem
podstawy tworzenia takich arkuszy.

4.9.1. Zastosowanie jezyka Xpath

XPath stanowi samodzielng specyfikacje ktorg mozna znalez¢ na stronie
http://www.w3org/TR/xpath.

Jej pelny opis w tym wyktadzie jest niemozliwy wiec zaznaczone beda tylko
gléwne zasady postugiwania si¢ tym jezykiem.

Jak juz wspomniano Xpath stuzy do odwotania si¢ do poszczegélnych elementdéw i
ich atrybutow dokumentu XML.

Odwolania te sg czynione przy uzyciu adresdéw wzglednych (wzgledem elementu
biezacego) lub absolutnych w postaci sciezki dostepu do danego wezta (i jego
potomkdéw) 1 ewentualnie jego atrybutu. Przy przetwarzaniu

wyrazenia XPath zwracany jest zestaw wezlow, ktory moze by¢ poddany réznym
operacjom m.in. przeksztalceniu na inny format.

Oprocz samego wyboru weztow XPath udostepnia funkcje operujace na zestawach
weztow t.j. not() i count().

Funkcje te omowione zostang w zastosowaniu razem z konstrukcjami
arkusza XSL.

4.9.2. Tworzenie arkusza stylow w jezyku XSL (XML Stylesheet Language)
Rozszerzalny jezyk arkuszy stylow (informacje o XSL mozna uzyskac na stronie
http://www.w3.org/Style/XSL) stuzy do tworzenia arkuszy styléw. Sktada si¢ ze
zbioru stow w formacie XML stuzacych do formatowania dokumentu XML.
Glowne jego skladniki to:

- szablony XSL

- filtry

- instrukcje iteracji (petle)

- instrukcje wyboru

Szablony XSL
maja ogolng postac:

<xsl:template match=""[wyrazenie
XPath]"*>

<l-- tu wstawiamy sposob
formatowania -->

</xsl:template>

nazwa template oznacza szablon a atrybut match oznacza dopasowanie do
sposobu formatowania elementu ktorego $ciezke podano w wyrazeniu XPath.

Jako dokument XML ktory postuzy do zaprezentowania konstrukeji XSL
wybierzmy plik contents.html zawierajacy spis tresci ksigzki "Java and
XML" (autor: Brett MacLaughlin)

Jezeli teraz w arkuszu XSL umie$cimy szablon
<xsl:template match=""Java:Book"'>

Hello XML!

</xsl:template>

to poniewaz element Java:Book jest elementem gtownym to do szablonu zastanie
zwrocona cata hierarchia elementéw dokumentu XML.Procesor XSLT przetwarza
te hierarchi¢ elementow 1 po napotkaniu kazdego wezta dodaje dane do strumienia
wyjsciowego transformacji. Jezeli dla danego elementu nie podano szablonu dane
wynikowe nie beda nic zawieraly

W tym przypadku wynikowy dokument transformacji zawiera¢ bedzie napis Hello
XML,

Jezeli chceieliby$my Zeby procesor dopasowat wszystkie elementy podrzedne
elementu biezgcego za pomocg wszystkich szablonéw w arkuszu to trzeba uzy¢

konstrukcji <xsl:apply-templates> ...</xsl:apply-templates>

Nastepujacy arkusz przeksztatca dokument XML do formatu HTML i w jego ciele
umieszcza dane ze wszystkich elementow XML.

<?xml version=""1.0" encoding=""1SO-8859-2""?>
<xsl:stylesheet xmlIns:xsl=""http://www.w3c.org/2000/xsl/transform""
"http://www.oreily.com/catalog/java.xml'* version="1.0"">

<xsl:template match=""Java:Book"">
<htmlI>
<head><title>Java Book Html</title></head>
<body>
<xsl:apply-templates />

</body>

</html|>

</xsl:template>
</xsl:stylesheet>>
Wynikowy dokument HTML ma postac¢:
<html xmlIns:JavaXML=""http://www.oreily.com./catalog/javaxml* >
<head><title>Java Book Html</title></head>
<body>

Java and XML

Introduction

What is it?

How Do | Use It?

Why should I Use It?

Creating XML

An XML Document

The Header

The Content What's next?
<!I-- pozostale rozdzialy -->
</body>
</html>

Po tym przyktadzie powstaje pytanie jak dopasowywac indywidualnie elementy
XML.

Stuzy do tego konstrukcja <xsl:value-of select=""[sciezka XPath]"'>

Zatem zeby w poprzednim przyktadzie znacznik html <title> zawierat dane z
elementu <JavaXML:Title>

trzeba uzy¢ szablonu:

<xsl:template match=""JavaxXML:Book"">
<html>

<head>
<title><> <xsl:value-of select=""JavaXML.:Title" /> </title>

</head>

<body>

<xsl:apply-templates />

</body>

</html>
</xsl:template>
Istotne w tym przyktadzie jest to Ze mimo ze warto$¢
elementu JavaXML.:Title zostata wstawiona do znacznika html <title> to element
ten nie zostal usuniety z hierarchii elementéw dostgpnych w szablonie. Zatem

warto$¢ tego elementu pojawi si¢ w tytule dokumentu html jak réwniez w jego
ciele tak jak w poprzednim przyktadzie.

Wynika to z og6lnej zasady ze dane wejSciowe procesora XSLT sa niezmienne-
mozna najwyzej co$ do nich doda¢ i dokona¢ przeksztalcenia formatu.

Filtry

Czgsto zachodzi potrzeba wytaczenia z przeksztatcania pewnych weztow struktury
drzewiastej dokumentu XML.

W takim przypadku najwygodniej jest wykorzysta¢ funkcje XPath o nazwie not().
Jezeli w poprzednim przykladzie chcielibySmy wylaczy¢ z przetwarzania

element JavaXML :Title zagniezdzony w elemencie biezagcym Java:Book to
odpowiedni szablon powinien wyglada¢ nastepujaco:

<xsl:template match=""JavaXML:Book"">

<htmlI>

<head>

<title><> <xsl:value-of select=""JavaXML.:Title" /> </title>
</head>
<body>
<xsl:apply-templates select=""*[not(self::JavaXML:Title)]"">
</body>
</html>
</xsl:template>

Stowo self oznacza w tym przypadku ze wezty wystepujace po tym stowie sg
potomne wzgledem wezta biezacego.

Instrukcje iteracyjne (petle)

majg posta¢ <xsl:for-each select="[wyrazenie XPath]">...</xsl:for-

each> i stuza do iteracji po danych w ramach jednego typu elementu ;

np. w elemencie <Java:XML:Contents> chcemy wydrukowa¢ tytuty rozdziatow-
dane elementow < JavaXML : Heading >

Wéweczas nasz szablon ktory formatuje wydruk w postaci html mégtby wygladaé
tak:

<xsl:template match=""JavaXML:Contents'">
<h1>Contents</h1>

<xsl:for-each select=""JavaXML:Chapter''>
 <xsl:value-of select=""JavaXML:Heading" />
<xsl:for-each>

</xsl:template>

Instrukcje wyboru

pozwalaja przetwarzac¢ tylko te wezty ktore spetniajg pewne kryteria wyboru.

Podstawowa konstrukcjg iteracyjng jest <xsl:if test=""[wyrazenie
logiczne]''>...<xsl:if>

Jezeli wynikiem testu jest prawda to element <xsl:if > bedzie obliczany w
przeciwnym razie nie.

Jezeli zatem w poprzednim przyktadzie chcemy wypisa¢ tylko te rozdziaty ktérych
atrybut focus ma warto$¢ XML, mozemy to uzyska¢ w nastepujacy sposob:

<xsl:template match=""JavaXML.:Contents'">
<h1>Contents</h1>

<xsl:for-each select=""JavaXML:Chapter''>
<xsl:if test=""@focus="XML" "">
 <xsl:value-of select=""JavaXML:Heading" />
<xsl:if>
<xsl:for-each>

</xsl:template>

Nastepng pozyteczng konstrukcjg jest konstrukcja ztozona <xsl:choose>...
</xsl:choose> o0 postaci:

<xsl:choose>
<xsl:when test=""'[wyrazenie logiczne]'>...</xsl:when>
<xsl:otherwise>...</xsl:otherwise>

</xsl:choose>

Pozwala ona na dokonanie testu warunku <xsl:when test=..>.i wykonanie jednej
operacji jezeli jest spelniony i innej operacji jezeli warunek nie jest
spelniony <xsl:otherwise>....

Ostatni szablon zmodyfikujemy w ten sposob zeby wypisywal nazwe elementu 1 w
zalezno$ci od niej tematyke.

<xsl:template match=""JavaXML:Contents'>
<h1>Contents</h1>

<xsl:for-each select =""JavaXML.:Chapter''>
<xsl:choose>
<xsl:when test ="@focus ='Java’ '">
 <xsl:value-of select =""JavaXML :Heading" />(focus:Java)
</xsl:when>
<xsl:otherwise>
 <xsl:value-of select=""JavaXML:Heading" />(focus: XML)
</xsl:otherwise>
</xsl:choose>
</xsl:for-each>

</xsl:template>

Dodatkowa mozliwoscig w XML jest konstrukcja <xsl:copy-of
select=""[wyrazenie XPath|]'> ktora przekazuje zestaw wezlow bezposrednio na
wyscie procesora XSLT. Zestaw weztow nie jest wowczas przetwarzany.

Na zakonczenie tego krotkiego wprowadzenia w arkusze XSL warto zaznaczyc¢, ze
daje on rowniez mozliwo$¢ definiowania wlasnych weziow 1 atrybutéw poprzez
konstrukcje:

<xsl:element name=""nazwa elementu'">...</xsl:element>
<xsl:attribute name=""nazwa atrybutu''>...</xsl:attribute>

Moga one stanowi¢ elementy pomocnicze w procesie przetwarzania lub moga by¢
dodane do danych wyjsciowych.

Przyktad arkusza stylow dla pliku contents.xml.
Nalezy znalez¢ w tym dokumencie omawiane wyzej konstrukcje XPath i XSL.

Dokument contents.xsl

<xsl:stylesheet xmins:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
version="1.0">
<xsl:template match="JavaXML:Book">
<html>
<head>
<title><xsl:value-of select="JavaXML.:Title" /></title>
</head>
<body>
<xsl:apply-templates select="*[not(self::JavaXML.:Title)]" />
</body>
</html>
</xsl:template>
<xsl:template match="JavaXML.:Contents">
<center>
<h2>Table of Contents</h2>
</center>
<hr />

<xsl:for-each select="JavaXML.:Chapter">
<xsl:choose>
<xsl:when test="@focus="'Java"">
<xsl:value-of select="JavaXML:Heading" /> (Java Focus)
</xsl:when>

<xsl:otherwise>

<xsl:value-of select="JavaXML:Heading" /> (XML Focus)

</xsl:otherwise>
</xsl:choose>
</xsl:for-each>

</xsl:template>
<xsl:template match="JavaXML:References">
<p>
<center><h3>Useful References</h3></center>

<xsl:for-each select="JavaXML:Reference">

<xsl:element name="a">
<xsl:attribute name="href">
<xsl:value-of select="JavaXML:Url" />
</xsl:attribute>
<xsl:value-of select="JavaXML:Name" />
</xsl:element>

</xsl:for-each>

</p>
</xsl:template>
<xsl:template match="JavaXML:Copyright">
<xsl:copy-of select="*" />

</xsl:template>

</xsl:stylesheet>

zrédlo: http://www.oreilly.com/catalog/javaxml

4.10. Zaawansowane zastosowania dokumentow XML
4.10.1. Struktura publikacji WWW(/(publishing framework)

Termin ten nie ma formalnej definicji, ale jest w wiekszos$ci przypadkow jest
interpretowany jako zestaw narzedzi XML wykonujacych przetwarzanie,
przeksztalcanie oraz inne operacje na dokumentach XML w ramach danej
aplikacji. dziatajacej zazwyczaj po stronie serwera obstugujacego mechanizm
serwletow. Struktura publikacji odpowiada na zadanie pobrania publikowane;]
wersji pliku (published file) np. w formacie HTML lub PDF. Plik publikowany
powstaje dynamicznie z pliku XML na skutek zastosowania transformacji XSLT
lub jest wynikiem przeksztalcenia pliku z innego formatu.

Do najbardziej znanych struktur publikacji nalezg :

Apache Cocoon: http://xml.apache.org

Ehydra Application Server: http://www.enhydra.org

Bluestone XML Server: http://www.bluestone.com/xml

SAXON: http://users.iclway.co.uk/mhkay/saxon

Szczegbdlng pozycje ze wzgledu na stabilno$¢ i integracje z narzgdziamy XML
zajmuje struktura Apache Cocoon.

Domyslnie obstuguje ona Apache Xerces 1 Apache Xalan, pozwala na
wykorzystanie dowolnego parsera XML. Wykorzystuje rowniez strukture
serwletow Javy.

Po pobraniu 1 zainstalowaniu Apache Cocoon trzeba zainstalowac serwer
obstugujacy mechanizm serwletow (np. Jakarta Tomcat)a nastgpnie skonfigurowac
ten mechanizm podajac Sciezki dostgpu do bibliotek Cocoon oraz do pliku
wlasciwosci Coccoon.

Generalnie instalacja struktury aplikacji jest dos¢ ztozona wigc warto postuzy¢ sie
pomocg online znajdujaca si¢ pod adresami:

http://xml.apache.org/
http://www.enhydra.org/
http://www.bluestone.com/xml
http://users.iclway.co.uk/mhkay/saxon

http://xml.apache.orqg, http://xml.apache.org./cocoon/fags.html.

Po zainstalowaniu i skojarzeniu struktury publikacji z serwerem korzystanie ze
struktury publikacji polega na uzyciu przegladarki WWW i wpisywaniu adreséw
URL odpowiednich plikow XML.

Interesujgca cechg Apache Cocoon jest mozliwo$¢ wykorzystania technologii
tacznosci bezprzewodowej. Odpowiednie wpisy w pliku wtasciwosci Cocoon
pozwalaja wykry¢ klienta bezprzewodowego (telefon komérkowy z dostepem do
Internetu) 1 wystanie odpowiedzi odpowiedniej dla urzagdzenia WAP (umieszczone;j
w znacznikach <wml>...</wml>).

4.10.2. Rozszerzalne strony serwera XSP(Extensible Server Pages)
Rozszerzalne strony XSP powstaty na gruncie rozwijania struktury publikacji
Strony XSP to dokumenty w formacie XML, ktore stanowig rozwigzanie
problemow JSP, ktore nie zostaty do konca rozwigzane, a mianowicie
rozdzieleniem zawartoS$ci 1 prezentacji oraz zmiang formatu JSP oraz uzycia JSP do

komunikacji migdzy aplikacjami.

Na stronach XSP mozna uzywac takze logiki biznesowej wykorzystujac
komponenty Javy dostepne po stronie serwera (np. Enterprise Java Beans).

Generalnie strony XSP sa bardziej elastyczne i uniwersalne niz strony JSP.

Przyktad prostej strony XSP wyliczajacej ile razy zostata ona pobrana :

<?xml version="1.0"?>
<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>
<?xml-stylesheet href="myStylesheet.xsl" type="text/xsl"?>
<xsp:page language="java" xmins:xsp="http://www.apache.org/1999/XSP/Core">
<xsp:logic>

private static int numHits = 0;

private synchronized int getNumHits() {

return ++numHits;

http://xml.apache.org/
http://xml.apache.org./cocoon/faqs.html

}
</xsp:logic>
<page>
<title>Hit Counter</title>
<p>I've been requested <xsp:expr>NumHits()</xsp:expr> times.</p>
</page>

</xsp:page>

zrodlo: http://www.oreilly.com/catalog/javaxml

W znaczniku <xsp:logic> zawarta jest logika aplikacji-obliczanie ile razy dana
strona zostala pobrana.

Poniewaz jest to dokument XML 1 jako taki moze zosta¢ poddany przetworzeniu w
modelu SAX lub DOM, jak réwniez poddany transformacji XSLT zgodnie z
okreslonym arkuszem stylow XSL 1 w ten sposob oddzieleniu zawartosci od
prezentacji.

Jeden programista moze zatem generowac tre$¢ statycznie albo dynamicznie przy
uzyciu serwletu lub innej aplikacji Javy, drugi zas§ moze zmienia¢ sposob
prezentacji poprzez modyfikacj¢ arkusza stylow XSL.

4.10.3. XML-RPC (XML-Remote Procedure Call)

W technologii RPC serwer definiuje ustuge jako zestaw procedur, ktére klient
moze wywotywac chcac uzyskac dostep do tej ustugi.

Za pomocy tej technologii mozliwe jest wywotywanie procedur przez siec i
otrzymywania odpowiedzi tez przez sie¢ bez bezposredniego komunikowania si¢ z
obiektem zdalnym oferujacym ustuge.

W Javie ta technologia przestala by¢ uzywana od momentu powstania technologii
RMI, w ktérej klient uzyskujac referencje do zdalnego obiektu zarejestrowanego i
wyeksportowanego po stronie serwera, wywoluje jego metody 1 otrzymuje wyniki
tych wywotan. Klient RMI uzyskuje komunikacje¢ za posrednictwem namiastek (po
stronie klienta) i szkieletow (po stronie serwera) tadowanych przez sie€.

Najwigkszy problem w technologii RPC zwigzany byt z kodowaniem 1
odkodowywaniem przesytanych danych o ztozonej strukturze - pojawienie si¢

standardu XML zmienito radykalnie t¢ sytuacje. Technologia XML
pozwolita przywrodci¢ znaczenie technologii RPC dzigki reprezentowaniu
dowolnych danych oraz ich struktury za pomocg dokumentéw tekstowych w
standardzie XML.

W konsekwencji wysytanie 1 odbieranie danych tekstowych za pomoca
mechanizmu XML-RPC w pewnych sytuacjach jest wydajniejsze niz technologia
RML.

Informacje 0 XML-RPC uzyska¢ mozna na stronie http://www.xml-
rpc.com , natomiast pakiet APl Javy dla XML-RPC mozna uzyska¢ ze
strony http://helma.at/hannes/xmlrpc.

Pakiet ten o nazwie helma.xmlrpc zawiera m.inn.klasy XmIRpc, XmIRpcClient,
XmlRpcServer, XmlRpcHandler stuzace do tworzenia klienta 1 serwera XML-RPC
oraz do kodowania 1 przetwarzania przesytanych danych . Klasa WebSerwer
opisuje prosty serwer HTTP do obstugi zadan klienta XML-RPC.

W komunikacji XML-RPC kluczowa rolg odgrywaja dwie procedury obstugi:
- procedura obshugi Zadania
- procedura obstugi odpowiedzi

Procedura obstugi zadania zawarta jest w bibliotekach XML-RPC w klasie
helma.xmlrpc. XmIRpcServer, zatem programista musi zdefiniowac¢ tylko procedure
obstugi odpowiedzi, ktéra musi by¢ zarejestrowana w serwerze.

W sygnaturze tej metody mogg wystapi¢ typy zmiennych obstugiwane przez XML-
RPC.

Typy te 1 ich odpowiedniki w Javie zawiera ponizsza tabela:

Typy XML-RPC | Typy Javy

int int

boolean boolean

string java.lang.String
double double
dateTime.is08601 | java.util.Date
struct java.util.HashTable
array java.util.Vector
base64 byte[]

Przy pisaniu aplikacji klient-serwer XML-RPC uwzglednié trzeba nastepujace
etapy:

- zdefiniowanie klasy a w niej metody, ktora ma by¢ uruchomiona zdalnie
(klasa procedury obslugi odpowiedzi)

- ustalenie parsera SAX do przetwarzania i kodowania XML po stronie
serwera

- utworzenie serwera XML-RPC

- zarejestrowanie klasy procedury obslugi

- ustalenie parsera SAX do przetwarzania i kodowania XML po stronie klienta
- utworzenie klienta

- wywolanie procedury obshugi

W ramach prostego przyktadu rozpatrzmy aplikacje typu klient - server XML-RPC,
ktéra wywotuje zdalnie metode sayHello(). Metoda ta pobiera argument text typu

String 1 zwraca fancuch "Hello "+text.

Definicja klasy procedury obstugi odpowiedzi i metody wywotywanej zdalnie:

public class HelloHandler ({

public String sayHello (String text) {
return "Hello"+text;

}

}

zrédlo: http://www.oreilly.com/catalog/javaxml

Przyktadowy serwer XML-RPC rejestrujacy powyzsza klase z procedurg obstugi:

import java.io.IOException

import helma.xml.rpc.XmlRpc;
import helma.xmlrpc.WebSerwer;

class ServerHello {
public static void main (String[] args) {

//numer poru serwera z linii komend

if (args.length<l) {
System.out.println ("Port number missing");
System.exit (-1);

}

try |

//ustalenie parsera Apache Xerces SAX
XmlRpc.setDriver () ("org.apache.xerces.parsers.SAXParser")

//utworzenie serwera HTTP
WebServer server = new WebServer (Integer.parselnt (args[0]);

//rejestracja klasy procedury obstugi,ktérej nadano nazwe "hello"
server.addHandler ("hello",new HelloHandler());
}
catch (ClassNotFoundException e) {
System.out.println("Nie odnaleziono klasy parsera SAX");
}
catch (IOException e) {
System.out.println (e.getMessage());

}
} //main ()

} //class SerwerHello

zrédlo: http://www.oreilly.com/catalog/javaxml

Przyktad klasy klienta wywotujacego zdalnie zarejestrowang metodg :

//import bibliotek

import Jjava.io.IOException;

import java.net.MalformedURLException;
import java.util.Vector;

import helma.xmlrpc.XmlRpc;
import helma.xmlrpc.XmlRpcClient;
import helma.xmlrpc.XmlRpcException;

public class ClientHello {
public static void main (String args[]) {

//tekst do wyslania z linii komend

if (args.length < 1) {
System.out.println ("Text missing");
System.exit (-1);

}

try {

// ustalenie parsera SAX:Apache Xerces
XmlRpc.setDriver ("org.apache.xerces.parsers.SAXParser") ;

// utworzenie klienta;serwer na porcie lokalnym
XmlRpcClient client =
new XmlRpcClient ("http://localhost:8080/");

// utworzenie zadania
Vector params = new Vector():;

params.addElement (args[0]) ;

// wystanie zadania

String result
=(String)client.execute ("hello.sayHello",params) ;

//wydrukowanie odpowiedzi
System.out.println ("Response from server:" + result); }

catch (ClassNotFoundException e) {

System.out.println ("Could not locate SAX Driver");

}
catch (MalformedURLException e) {

System.out.println("Incorrect URL for XML-RPC server format: " +
e.getMessage ()) ;

}

catch (XmlRpcException e) {
System.out.println ("XML-RPC Exception:" + e.getMessage());

}

catch (IOException e) {
System.out.println("IO Exception: " + e.getMessage());

}
} //main ()

} //class ClientHello

zrédlo: http://www.oreilly.com/catalog/javaxml

W powyzszej aplikacji nie widaé jawnego uzycia formatu XML-odbywa sie to
niejawnie. Wystane zadanie zostalo przettumaczone na wywotanie HTTP w ktérym
dane zwigzane z metoda zdalng wystepuja w formacie XML , a wynik wykonania
metody kodowany jest tez do formatu XML. Zadanie i odpowiedZ prezentuje
ponizsza tabela:

Zadanie Odpowiedz

POST /RPC2 HTTP/1.1 HTTP/1.1 200 OK

User-Agent:Tomcat Web Server/3.1 Beta (Sun [Connection: close
Solaris 2.6)
Content-Type: text/xml
Host: new Instance.com
Content-length: 149
Content-Type: text/xml
<?xml version="1.0"?>
Content-length: 234
<methodResponse>
<?xml version="1.0"?>

<methodCall> <params>

<methodName>hello.sayHello</methodName> <param>

<params> <value><string>Hello
XML</string></value>
<param>
</param>
<value><string>XML</string></value>
</params>
</param>
</methodResponse>
</params>

</methodCall>

zrodlo: http://www.oreilly.com/catalog/javaxml
4.10.4. XML w plikach konfiguracji serwerow
Standard XML ma rowniez zastosowanie w serwerach aplikacji.

Przyktadem moze by¢ Enterprise JavaBean, ktorej specyfikacja wymaga zeby
pliki deskryptoréw wdrozen oparte byly o XML

Innym przyktadem jest wykorzystanie XML w konfiguracji catego mechanizmu
serwletow jak rowniez w konfiguracji indywidualnych serwletow.

Jako prosty przyktad wykorzystania XML w plikach konfiguracyjnych podamy
plik konfiguracyjny dla klienta 1 serwera dla oméwionej powyzej aplikacji klient
serwer XML-RPC.

W pliku takim powinny by¢ zawarte informacje dotyczace:

o serwera: port serwera, klasa parsera od strony serwera, procedury obstugi
(identyfikator klasy i nazwa klasy)

« klienta: nazwa hosta na ktérym zainstalowano serwer, port serwera, klasa
parsera od strony klienta

Dodatkowo plik konfiguracyjny powinien zosta¢ zaw¢zony zgodnie z definicja
DTD, tak aby byt rozumiany przez kazdy serwer.

Przyktad pliku konfiguracyjnego i jego zawegzenia:

Plik konfiguracyjny klienta i serwera

Plik DTD do ktérego odwoluje si¢ plik
konfiguracyjny

<?xml version="1.0"?>

<IDOCTYPE JavaXML:xmlrpc-config
SYSTEM "DTD/XmIRpc.dtd">
<JavaXML:xmlrpc-config xmlins:JavaXML=
"http://www.oreilly.com/catalog/javaxml/" >
<I-- Configuration Information for Server and
Clients -->

<JavaXML:hostname>localhost</JavaXML:hos
tname>

<JavaXML:port
type="unprotected">8585</JavaXML.:port>
<JavaXML.:parserClass>
org.apache.xerces.parsers.SAXParser
</JavaXML.:parserClass>

<I-- Server Specific Configuration Information -
->

<JavaXML:xmlrpc-server>
<!-- List of XML-RPC handlers to register -->
<JavaXML:handlers>
<JavaXML:handler>
<JavaXML.:identifier>hello</JavaXML.:ide
ntifier>
<JavaXML:class>HelloHandler</JavaXM

L:class>
</JavaXML:handler>

</JavaXML:handlers>
</JavaXML:xmlrpc-server>

</JavaXML:xmlrpc-config>

<IELEMENT JavaXML:xmlrpc-config
(JavaXML:hostname, JavaXML.:port,
JavaXML.:parserClass, JavaXML:xmlrpc-server)>

<IATTLIST JavaXML:xmlrpc-config xmins:JavaXML
CDATA #REQUIRED >

<IELEMENT JavaXML:hostname (#PCDATA)>
<IELEMENT JavaXML.:port (#PCDATA)>

<IATTLIST JavaxXML:port type (protected|unprotected)
"unprotected" >

<IELEMENT JavaXML.:parserClass (#PCDATA)>

<IELEMENT JavaXML:xmlrpc-server (JavaXML:handlers)>

<IELEMENT JavaXML:handlers (JavaXML:handler)+>

<IELEMENT JavaXML.:handler (JavaXML.:identifier,
JavaXML.:class)>

<IELEMENT JavaXML:identifier (#PCDATA)>

<IELEMENT JavaXML.:class (#PCDATA)>

zrédlo: http://www.oreilly.com/catalog/javaxml

4.11. Rozszerzenia Javy stosowane w technologii XML
4.11.1. JAXB (Java Architecture for XML/Java Binding)

Narzedzia do automatycznego mapowania dokumentow XML na obiekty Javy.
JAXB kompiluje DTD lub XML Schema do jednej lub kilku klas Javy, ktére
obstuguja wszystkie szczegdty parsowania i formatowania dokumentu XML. w
wielu przypadkach wygenerowane klasy sg bardziej efektywne niz parsery SAX
lub DOM.

4.11.2. JAXM (Java API for XML Messaging)

Pakiet JAXM umozliwia wysytanie 1 odbieranie wiadomosci w formacie XML
przy uzyciu API Javy. JAXM implementuje protokét SOAP 1.1(Simple Object
Access Protocol) z attachmentami, dzigki czemu uzytkownik moze koncentrowac
si¢ na wysytaniu, odbieraniu i dekompozycji wiadomosci w aplikacji zamiast
programowania komunikacji XML na niskim poziomie.

4.11.3. JAX- RPC (Java API for XML RPC)

Umozliwia budowanie aplikacji sieciowych 1 ustug sieciowych przy zastosowaniu
zdalnego wywotywania procedur (Remote Procedure Call) bazujacego na XML.

4.11.4. JAXR (Java API for XML Registries)

Dostarcza standardowego Java API uzyskiwania dostepu do réznych rejestrow
XML.

Rejestr XML stanowi infrastrukture do tworzenia, rozwijania i znajdywania ustug
sieciowych.

JAXR wspotdziata z innymi technologiami Javy t.j. JAXP, JAXB, JAXM, JAX-
RPC w ramach J2EE (Java 2 Enterprise Edition).

Obecnie w Internecie (http://www.java.sun.com/xml) dostepny jest pakiet Java
WSDP (Java Web Services Developer Pack1.2)- zestaw narze¢dzi do tworzenia,
testowania 1 wdrazania aplikacji XML wlaczajac w to interfejsy API do
przetwarzania 1 przeksztatcania XML oraz narzedzia do JAXB.

4.12. Cwiczenia i zadania

Zadanie-1:
Napisz wiasny dokument XML a nastgpnie dokonaj jego przetwarzania (parsingu)
w modelu SAX, DOM, JDOM.

http://www.java.sun.com/xml

Wymysl sposob testowania i porownania dziatania programéw dokonujacych
analizy zgodnie z kazdym z 3 modeli.
Wez pod uwagg takie parametry jak zuzycie pamigci 1 szybko$¢ analizy.

Zadanie-2:
Dokonaj zawgzenia dokumentu z zadania-1 zgodnie z definicja DTD i dokona;j
analizy tak zawg¢zonego dokumentu w kazdym z trzech modeli.

Zadanie-3:

Dokonaj zawgzenia dokumentu z zadania-1 wedlug XML Schema i dokonaj
analizy tak zaw¢zonego dokumentu w modelu SAX i DOM stosujac biblioteki
JAXP1.2.

Zadanie-4:
Napisz aplikacje sieciowg firma-firma w ktorej dane przesytane sg miedzy
firmami w formacie XML.

Firma pierwsza to fabryka samochodéw osobowych i1 dostawczych.
Firma druga sie¢ to dealeréw samochodowych.

Fabryka informuje wszystkich zarejestrowanych dealerow 0 nowych modelach
samochodow dostepnych aktualnie.

Dealerzy uzyskang informacj¢ przeksztatcaja w ten sposob zeby moc
zaprezentowac ja klientom na swojej stronie www.

Na stronie tej umieszczony jest formularz pozwalajacy przyjmowac zamowienia od
klientow na dany model samochodu.

Obstuga formularza powinien zajmowac si¢ serwlet dzialajacy po stronie dealera.
Wsrod dealerow mamy albo dealerow samochoddéw osobowych albo dostawczych,
zatem kazdy z nich musi przefiltrowac informacje z fabryki 1 wydzieli¢ tylko t¢

ktdra go interesuje.

Kazdy z dealeréw informuje fabryke o ilosci sprzedanych samochodéw danego
modelu. Przy kazdym modelu dealer podaje informacje ile takich modeli ma
fabryka jeszcze przystac.

Protokotem komunikacyjnym ma by¢ protokét HTTP.

4.13 Literatura, zrodla

« Brett McLaughlin **Java and XML" O'Reilly & Associates
2000; http://www.oreilly.com/catalog/javaxml

« Thierry Violleau ""Java Technology and XML-Part I"
2001; http://www.java.sun.com

« Java 2 SDK Standard Edition Documentation (version 1.4.1);
http://www.java.sun.com

