
JDBC – aplikacje bazodanowe

Relacyjne bazy danych

 Baza danych (ang. DB – Database) to grupa danych powiązanych ze
sobą pewnymi relacjami.

 System bazodanowy (ang. DBMS – Database Management System)
zarządza przechowywanymi danymi, i użytkownikami tych danych.

 System zarządzania relacyjnymi bazami danych (ang. RDBMS –
Relational Database Management System) to system bazodanowy, w
którym organizacja danych bazuje na pojęciu relacji z matematycznej
teorii mnogości.

 Historia RDBMS:
 Twórcą teorii relacyjnych baz danych jest Edgar Frank Coode, który w 1970

roku po raz pierwszy opublikował postulaty relacyjnego modelu danych w
pracy A Relational Model of Data for Large Shared Data Banks.

 Pierwszy komercyjny relacyjny system zarządzania bazą danych wypuściła
na rynek w 1979 roku firma Relational Software (później Oracle).

Relacyjne bazy danych

 Dane w bazie są zorganizowane w postaci tabel, widoków i
schematów.

 Tabela (ang. table) składa się z wierszy (rekordów) i
kolumn (pól).

 Widok (ang. view) to zakres widocznych wierszy i kolumn z
jednej lub kilku tabel.

 Tabela zajmuje fizyczne miejsce w pamięci, a widok to
jakby tabela wirtualna.

 Schemat (ang. scheme) to logiczne uporządkowanie tabel i
widoków oraz relacji między nimi.

 Baza danych jest więc zestawem schematów oraz tabel i
widoków, pomiędzy którymi zachodzą pewne relacje.

Relacyjne bazy danych
 System zarządzania relacyjną bazą danych

zapewnia spójność danych poprzez:
 więzy jednoznaczności (ang. unique constraint) – klucz

główny (ang. primary key);
 spójność referencyjną (ang. referential constraint) –

klucze obce (ang. foreign keys);
 warunki na wartości kolumn (ang. check constraint) –

zawężenia wartości pól;

 wyzwalacze (ang. triggers) – procedury automatycznie
uruchamiane w procesie modyfikacji danych w bazie.

Relacyjne bazy danych

 Indeksy to dodatkowa struktura związana z tabelą, która
przyspiesza dostęp do rekordów w tabeli. Indeksy,
podobnie jak klucze, mogą odnosić się do jednej lub kilku
kolumn w tabeli. Indeksy powodują nieznaczny spadek
wydajności maszyny bazodanowej.

 Klastry, podobnie jak indeksy, przyspieszają dostęp do
danych. Klastry to sposób przechowywania powiązanych ze
sobą danych w tym samym miejscu na dysku. Klastry
powodują znaczny spadek wydajności maszyny
bazodanowej w przypadku modyfikacji danych.

Relacyjne bazy danych

 Ochrona danych (ang. security) to aspekty związane z
dostępem do danych przez poszczególnych użytkowników.
Jest ona realizowana przez system bazodanowy poprzez:
 przywileje (ang. privileges) można użytkownikowi nadawać albo

odbierać; przywileje dotyczą określonych operacji na rzecz
określonych danych;

 role (ang. roles) to zbiory przywilejów; rolę można przypisać do
konkretnego użytkownika lub do innej roli.

 Transakcje (ang. transactions) gwarantują integralność
danych w bazie. Transakcja to grupa operacji
wykonywanych przez maszynę bazodanową, która tworzy
logiczną całość (albo wszystkie operacje wykonają się
poprawnie albo żadna nie dojdzie do skutku).

Relacyjne bazy danych

 SQL (ang. Structured Query Language) to język, w
którym można rozmawiać z systemem
bazodanowym.

 SQL nie jest językiem proceduralnym.
 Za pomocą SQLa można:

 utworzyć bazę danych;
 zarządzać danymi w bazie (dodawać, usuwać i

modyfikować dane);
 pobierać dane z bazy;
 zarządzać systemem bazodanowym.

 Kurs SQL: http://www.sqlcourse.com/index.html

JDBC

 Profesjonalne systemy bazodanowe udostępniają interfejsy
programistyczne (API), dzięki którym można uzyskiwać
dostęp do baz danych. Interfejsy takie są zdefiniowane dla
różnych popularnych języków programowania na różne
platformy systemowe.

 Programistyczny interfejs dostępu do baz danych z
poziomu Javy to JDBC (ang. Java Database Connectivity
API). JDBC jest uniwersalny i nie zależny od:
 maszyny bazodanowej,

 platformy sprzętowej,

 systemu operacyjnego.

JDBC
 JDBC to zestaw klas i interfejsów umieszczonych w

pakiecie java.sql, który umożliwia:

 połączenie z relacyjną bazą danych,

 wykonywanie instrukcji SQL na bazie,

 przetwarzanie wyników instrukcji SQL (w tym tabel
wynikowych).

 Obecna wersja JDBC to 4.2 API.

Architektura aplikacji bazodanowych

 Architektura dwuwarstwowa:
komputer klienta (aplikacja Javy, JDBC)
<- protokół dostępu do bazy ->
serwer bazodanowy (RDBMS)

Architektura aplikacji bazodanowych

 Architektura trójwarstwowa:
komputer klienta (aplikacja Javy, przeglądarka WWW)
<- protokół komunikacji z serwerem (HTTP, RMI) ->
maszyna serwera (serwer aplikacji, JDBC)
<- protokół dostępu do bazy ->
serwer bazodanowy (RDBMS)

Struktura JDBC
 Sterownik JDBC do określonej bazy danych to

zestaw klas, które implementują interfejsy w
pakiecie java.sql.

 Niezależność bazodanowa osiągnięta dzięki
zestawowi interfejsów w pakiecie java.sql,
implementowanych przez różnych producentów.

 Zadaniem JDBC jest ukrycie przed programistą
wszelkich specyficznych właściwości określonej
bazy danych.

Struktura JDBC

 java.sql.Driver to interfejs odpowiedzialny za nawiązanie
połączenia z bazą danych oraz za tłumaczenie zapytań SQLowych na
język określonej bazy.

 java.sql.DriverManager to klasa, która odpowiada za
zarządzanie listą dostępnych sterowników do baz danych i
udostępnienie aplikacji tego jednego, który jest przez nią wymagany.

 java.sql.Connection to interfejs, który reprezentuje
pojedynczą transakcję bazodanową.

 java.sql.Statement jest to interfejs reprezentujący zapytanie
SQLowe.

 java.sql.ResultSet to interfejs reprezentujący zbiór rekordów,
będących wynikiem zapytania SQLowego; wynik zapytania znajduje się
po stronie bazy danych.

Sterowniki JDBC

 JDBC-ODBC Bridge Driver – to sterownik pomostowy, czyli
wykorzystujący inny ogólny mechanizm dostępu do baz
danych (na przykład ODBC).

 Native API Partly Java Driver – to sterowniki napisane w
Javie, które wykorzystują do uzyskania dostępu do bazy
danych biblioteki napisane w innych językach (na przykład
C++).

 Net-Protocol Pure Java Driver – to sterownik, który
uzyskuje dostęp do bazy danych na poziomie serwera,
używając do tego celu protokołu sieciowego (dostęp
pośredni przez serwer).

 Native-Protocol Pure Java Driver – to sterowniki, które
wykorzystują protokoły sieciowe wbudowane w maszyny
bazodanowe (dostęp bezpośredni do systemu
bazodanowego).

URL dla bazy danych
 URL dla bazy danych umożliwia identyfikację bazy,

załadowanie odpowiedniego sterownika i
uzyskanie połączenia z bazą.

 Składnia URLa używanego w JDBC:
jdbc:<subprtokół>:<subnazwa>

gdzie <subprtokół> to nazwa sterownika lub
mechanizmu obsługi połączenia z bazą danych
a <subnazwa> to identyfikator bazy danych.

URL dla bazy danych

 Przykład URLa dla połączenia z bazą zarejestowaną
w ODBC:
jdbc:odbc:moja_baza

 Przykłady URLi dla różnych systemów
bazodanowych:
 MySQL: jdbc:mysql://localhost:3306/mydb
 MS-SQL: jdbc:sqlserver://127.0.0.1:1433/mydb
 PostgreSQL: jdbc:postgresql://serv:5432/mydb
 Mini-SQL: jdbc:msql://dbserver:1234/mydb
 Oracle: jdbc:oracle:thin:@localhost:1521:orcl
 Java-DB: jdbc:derby:newdb;create=true

Pliki JAR zawierające sterownik do
RDBMS
 Większość producentów systemów bazodanowych

dostarcza sterowniki javowe do swoich baz w postaci
plików JAR.

 Przed uruchomieniem programu korzystającego z bazy
danych musimy zlokalizować taki sterownik w swoim
systemie (na przykład dla bazy Apache Derby będzie to plik
derbyclient.jar).

 Uruchamiając program z wiersza poleceń trzeba określić
położenie tego sterownika:
java –cp .:sterownik.jar Program

Pliki JAR zawierające sterownik do
RDBMS
 Program w javie musi zarejestrować klasę sterownika JDBC.

 Automatyczna rejestracja jest wymagana dla sterowników zgodnych z
JDBC4.

 W starszych wersjach trzeba ręcznie dokonać rejestracji:

 poprzez załadownie sterownika do pamięci:
Class.forName(”org.postgresql.Driver”);

 albo przez skonfigurowanie właściwości jdbc.drivers przy
uruchamianiu programu:
java –Djdbc.drivers=org.postgresql.Driver

Program

 sama aplikacja też może skonfigurować tą właściwość:
System.setProperty(”jdbc.drivers”,

”org.postgresql.Driver”);

Metainformacje
o bazie danych

Connection conn; // połączenie z bazą
DatabaseMetaData md; // metadane
// należy połączyć się z bazą danych…
md = conn.getMetaData();
// …
md.getDatabaseProductName();
md.getDatabaseProductVersion();
md.getDriverName();
md.getURL();
md.getUserName();
md.supportsAlterTableWithAddColumn();
md.supportsAlterTableWithDropColumn();
md.supportsBatchUpdates();
md.supportsPositionedDelete();
md.supportsPositionedUpdate();
md.supportsTransactions();
md.supportsResultSetType(ResultSet.TYPE_SCROLL_INSENSITIVE);
md.supportsResultSetType(ResultSet.TYPE_SCROLL_SENSITIVE);

Łączenie się z bazą danych

 Połączenie z bazą uzyskujemy za pomocą klasy
DriverManager:
public Connection getConnection (String urlDB)

throws SQLException

{

Connection conn = null;

Properties connectionProps = new Properties();

connectionProps.put("user", this.userName);

connectionProps.put("password", this.password);

conn = DriverManager.getConnection(

urlDB, connectionProps);

System.out.println("Connected to database");

return conn;

}

 Połączenie z bazą należy na końcu zamknąć:
try {

if (conn!=null) conn.close();

} catch (SQLException ex) {/*…*/}

Wykonywanie zapytań do bazy

 Najprostszym sposobem wykonania zapytania do bazy jest użycie
obiektu Statement.

 Obiekt Statement nie tworzymy bezpośrednio, tylko używamy
metody createStatement obiektu Connection:
Statement stm = conn.createStatement();

 Zapytanie SQLowe SELECT, które da nam w wyniku tabelę z
rekordami możemy wykonać metodą executeQuery:
String query = "SELECT * FROM tabela;";
ResultSet rs = stm.executeQuery(query);

 Obiekt ResultSet reprezentuje tabelę rekordów z danymi;
poruszanie się po tych rekordach jest realizowane za pomocą metod
next i previous.

 Obiekt ResultSet jest powiązany ze swym macierzystym obiektem
Statement; jeśli macierzysty obiektem Statement użyjemy do
wykonania kolejnego zapytania, to obiekt ResultSet zostanie
automatycznie zamknięty.

Wyjątki SQL

 Często zdarza się, że jakaś operacja na bazie danych zakończy się
niepowodzeniem – wtedy zgłaszany jest wyjątek SQLException.

 W czasie operacji na bazie może zostać zgłoszonych kilka wyjątków –
wyjątek SQLException potrafi się kolejkować.

 Łapanie wyjątku SQLException na przykładzie:
try {

// operacje na bazie danych
}
catch (SQLException ex) {

do {
System.err.println(ex.getMessage());

} while ((ex=ex.getNextException())!=null);
}

 Czasami pojawiają się tylko ostrzeżenia w postaci wyjątków
SQLWarning dziedziczących po SQLException.

Przykład prostego użycia JDBC
String db = "jdbc:default:connection";
String login = "itsme";
String pass = "*****";
Connection conn = null;
Statement stm = null;
String query = "SELECT a, b, c FROM table";
try {

conn = DriverManager.getConnection(db,login,pass);
stm = conn.createStatement();
ResultSet rs = stm.executeQuery(query);
while (rs.next()) {

int x = rs.getInt("a");
String s = rs.getString("b");
float f = rs.getFloat("c");
// do something with x, s, f

}
}
finally {

try { if (stm != null) stm.close();
} catch (Exception ex) {}
try { if (conn != null) conn.close();
} catch (Exception ex) {}

}

Modyfikowanie danych w bazie

 Do modyfikowania danych w tabelach korzystamy
z poleceń SQLowych UPDATE, INSERT i
DELETE; polecenia te nie zwracają wyniku w
postaci tabeli rekordów, tylko liczbę określającą
ilość dokonanych modyfikacji.

 Do modyfikowania danych w tabelach używamy
metody executeUpdate:
Statement stm = con.createStatement();

String query = "DELETE FROM os WHERE wiek<18";

int cnt = stm.executeUpdate(query);

con.close();

//…

Polecenia SQLowe do bazy

 W sytuacji, gdy nie wiemy czy polecenie SQLowe będzie
wyciągać rekordy z danymi z bazy, czy będzie modyfikować
dane, używamy polecenia execute,

 Polecenie execute zwraca wartość typu boolean, która
jest true, gdy baza odpowiada tabelą rekordów (obiekt
ResultSet) albo false, gdy otrzymujemy liczbę
zmodyfikowanych rekordów.

 Po wykonaniu polecenia metodą execute można
otrzymać referencję do obiektu ResultSet:
ResultSet rs = stm.getResultSet();

albo liczbę zmian dokonanych w tabeli:
int cnt = stm.getUpdateCount();

Obsługa pól z wartością NULL
 Odczytując wartość pola numerycznego wskazywanego przez
ResultSet metodą getInt możemy otrzymać wartość
0 lub -1 – wtedy nie wiemy, czy jest to wartość zapisana w tym polu czy
może efekt przekształcenia null do typu int.

 Rozwiązaniem tego problemu jest metoda wasNull, która zwraca
boolean i mówi nam czy ostatnio przeczytana wartość była null:
int wiek = rs.getInt("wiek");
if (rs.wasNull()) {/*…*/}

 Innym rozwiązaniem jest użycie metody getObject:
Integer wiek = (Integer)rs.getObject("wiek");
if (wiek==null) {/*…*/}

Jak zarejestrować bazę
w ODBC (Windows 11)

 Panel sterowania → System i zabezpieczenia → Narzędzia systemu Windows
→ Źródła danych ODBC (64-bitowe)

 Okno Administrator źródeł danych ODBC : w zakładce DSN użytkownika
naciśnij przycisk Dodaj

 Okno Tworzenie nowego źródła danych: z listy sterowników wybierz
odpowiedni typ (np. Driver do Microsoft Excel .xls) i naciśnij przycisk Zakończ

 Okno Ustawienia dla programu … (np. Microsoft Excel): w polu nazwa źródła
danych wpisz swoją nazwę (np. kontakty), w polu opis możesz dodać
komentarz do bazy, dalej w ramce Baza danych wybierz wersję programu
(systemu bazodanowego) i wskaż samą bazę przyciskiem Wybierz… (np.
skoroszyt), na koniec naciśnij przycisk OK.

 Uwaga 1: w przypadku danych zapisanych w Excelu nazwa tabeli to nazwa
arkusza (np. dla arkusza abc nazwa tabeli to [abc$]).

 Uwaga 2: w jednym arkuszu można zapisać jedną tabelę; w pierwszym wierszu
są zapisane nazwy kolumn.

 Uwaga 3: nie należy używać polskich znaków diakrytycznych w nazwach
arkuszy i w nazwach kolumn.

Obsługa transakcji

 Obsługa transakcji jest w JDBC sterowana obiektem
Connection.

 Domyślnie nowe połączenie z bazą jest typu auto-commit –
każde polecenie do bazy jest pojedynczą transakcją.

 Aby samodzielnie sterować transakcjami trzeba właściwość
auto-commit ustawić na false:
conn.setAutoCommit(false);

 Po wykonaniu kilku poleceń na bazie możemy je
zatwierdzić poleceniem commit() albo anulować
poleceniem rollback().

 Istnieje też metoda getAutoCommit(), która informuje
o trybie auto-commit obiektu Connection.

Obiekt ResultSet
 Obiekt ResultSet reprezentuje zbiór uporządkowanych

danych (tabela z danymi).
 Dane z obiektu ResultSet odczytuje się, podobnie jak z

pliku, za pomocą kursora, który przesuwa się nad kolejnymi
rekordami w tabeli.

 ResultSet jest tworzony przez obiekt Statement po
wykonaniu metody executeQuery albo execute z
poleceniem SELECT.

 Zasoby z danymi, do których odwołuje się ResultSet
znajdują się po stronie systemu bazodanowego.

 Obiekt Statement utworzony za pomocą:
Statement stm = conn.createStatement();
może wygenerować obiekt ResultSet typu forward-only.

Obiekt ResultSet

 Przy tworzeniu obiektu Statement można określić jak
będzie się zachowywać obiekt ResultSet:
Statement stm =

conn.createStatement(rsType, rsCon);

przy czym oba argumenty createStatement są typu
int a odpowiadające im stałe są zdefiniowane w klasie
ResultSet.

 Argument rsType określa możliwości poruszania kursorem.

 Argument rsCon określa możliwość równoczesnego
wprowadzania zmian w tabelach.

Obiekt ResultSet

 Argument rsType może przyjmować następujące wartości:
 ResultSet.TYPE_FORWARD_ONLY

kursor można przesuwać tylko do przodu po jednym rekordzie;
 ResultSet.TYPE_SCROLL_INSENSITIVE

kursor można dowolnie przesuwać, dane w tabeli nie są wrażliwe na
równoczesne zmiany;

 ResultSet.TYPE_SCROLL_SENSITIVE
kursor można dowolnie przesuwać, dane w tabeli są wrażliwe na
równoczesne zmiany.

 Aby można było przemieszczać kursor w dowolnie wybrane pozycje
należy wybrać jeden z typów TYPE_SCROLL_INSENSITIVE lub
TYPE_SCROLL_SENSITIVE.

 Przykład obiektu Statement, który może utworzyć ResultSet, po
którym będzie można dowolnie przemieszczać kursor:
Statement stm = conn.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY);

Obiekt ResultSet

 Metody przemieszczające kursor w obiekcie ResultSet:
 boolean next ()

 boolean previous ()

 boolean first ()

 boolean last ()

 boolean beforeFirst ()

 boolean afterLast ()

 boolean absolute (int n)

 boolean realtive (int n)

 Metody przemieszczające kursor w obiekcie ResultSet zwracają
wartość boolowską true, gdy kursor ustawi się na jakimś rekordzie w
tabeli albo false, gdy kursor wyskoczy poza tabelę.

 Rekordy w obiekcie ResultSet są numerowane od 1.

Obiekt ResultSet

 Kursor, który można dowolnie przemieszczać po tabeli z rekordami
może być albo nie być wrażliwy na zmiany dokonywane równolegle
przez innych użytkowników w bazie.

 Aby kursor był nie wrażliwy na zmiany w bazie należy wybrać typ
kursora jako TYPE_SCROLL_INSENSITIVE (dane nie będą się
zmieniały w tabeli od momentu ich odczytania).

 Aby kursor był wrażliwy na zmiany w bazie należy wybrać typ kursora
jako TYPE_SCROLL_SENSITIVE (w momencie ustawienia kursora
na danym rekordzie z bazy danych ściągane są aktualne wartości
danych przypisanych do pól w bieżącym rekordzie).

 Przykład obiektu Statement, który może utworzyć ResultSet, po
którym będzie można dowolnie przemieszczać kursor i który będzie
wrażliwy na zmiany w bazie:
Statement stm = conn.createStatement(

ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY);

Obiekt ResultSet

 Argument rsCon decyduje o możliwości modyfikowania
danych w bazie i może przyjmować następujące wartości:
 ResultSet.CONCUR_READ_ONLY

kursor możne tylko czytać dane z tabeli;
 ResultSet.CONCUR_UPDATABLE

rekord, na który wskazuje kursor można dowolnie zmodyfikować i
zmiany te będą zapamiętane w bazie danych.

 Przykład obiektu Statement, który może utworzyć
ResultSet, w którym będzie można modyfikować dane:
Statement stm = conn.createStatement(

ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

Modyfikowanie rekordów

 Metody modyfikujące dane w rekordzie pod kursorem w obiekcie
ResultSet:
 void updateXxx (int col, Xxx val)

 void updateXxx (String col, Xxx val)

 void updateNull (int col)

 void updateNull (String col)

 void updateRow ()

 boolean rowUpdated ()

 void cancelRowUpdates ()

 Metody updateXxx modyfikują pole typu Xxx, na przykład
updateInt, updateDouble, updateString.

 Pola w rekordzie są numerowane od 1.

 Metoda updateRow zapisuje zmienione wartości i musi być
wywołana przed przejściem do następnego rekordu.

Usuwanie rekordów
 Metody usuwające rekord pod kursorem w obiekcie
ResultSet:

 void deleteRow ()

 boolean rowDeleted ()

 Metody deleteRow nie wolno używać w stosunku
do nowowstawionego rekordu.

Wstawianie rekordów
 Metody wstawiające nowy rekord do tabeli w

obiekcie ResultSet:
 void moveToInsertRow ()

 void insertRow ()

 boolean rowInserted ()

 Metoda moveToInsertRow przesuwa kursor do
miejsca, w którym będzie można zapisać nowy
rekord.

 Po wypełnieniu rekordu danymi za pomocą metod
updateXxx wstawiamy nowy rekord do tabeli
metodą insertRow.

Metainformacje o bazie danych
 Metainformacje o bazie danych uzyskujemy za pomocą

metody getMetaData:
DatabaseMetaData md =
conn.getMetaData();

 W obiekcie DatabaseMetaData mamy cały zbiór
metod do wyciągania informacji o bazie danych:
 getDatabaseProductName ()

 getDatabaseProductName ()

 getDriverName ()

 getURL ()

 getUserName ()

 supportsTransactions ()

 i wiele innych

Metainformacje o tabeli wynikowej

 Metainformacje o tabeli wynikowej uzyskujemy za pomocą
metody getMetaData:
ResultSetMetaData rsmd =
rs.getMetaData();

 W obiekcie ResultSetMetaDatamamy zbiór metod
do wyciągania informacji o tabeli wynikowej:
 getcolumnCount ()

 getColumnName (int n)

 getColumnDisplaySize (int n)

 getColumnType (int n)

 getColumnTypeName (int n)

 getColumnClassName (int n)

 i wiele innych

Bezpieczeństwo transakcji

 Baza danych blokuje tabele i rekordy na czas
wykonywania modyfikacji.

 Rozwiązanie problemu:
SELECT … FOR UPDATE;

Zapytanie preinterpretowane

 W JDBC można tworzyć procedury parametryzowane, w których
podaje się wzorzec ze znacznikami (pytajniki) zastępowanymi
konkretnymi wartościami przed wywołaniem (obiekty typu
PreparedStatement).

 Obiekt klasy PreparedStatement tworzymy podobnie jak
Statement:
PreparedStatement stmt =
conn.prepareStatement(”…”);

 W parametrze mogą wystąpić znaki zapytania (numerowane od 1),
które uzupełniamy odpowiednimi wartościami za pomocą metod
setXxx (gdzie Xxx oznacza typ parametru, na przykład
stmt.setString(nr,arg), stmt.setInt(nr,arg), itp); po
wypełnieniu znaczników konkretnymi wartościami można wykonać
polecenie (używając na przykład metody execute()).

Procedury przechowywane
w bazie danych
 Większość komercyjnych baz danych posiada wewnętrzny język

programowania (PL/SQL w przypadku Oracle’a), w którym można
definiować procedury działające na bazach danych (obiekty typu
CallableStatement).

 Obiekt klasy CallableStatement tworzymy podobnie jak
Statement:
CallableStatement stmt = conn.prepareCall(”…”);

 W parametrze mogą wystąpić znaki zapytania (numerowane od 1),
które uzupełniamy odpowiednimi wartościami za pomocą metod
setXxx (gdzie Xxx oznacza typ parametru, na przykład
stmt.setString(nr,arg), stmt.setInt(nr,arg), itp);
parametry wyjściowe rejestrujemy metodą
registerOutParameter; po wypełnieniu znaczników
konkretnymi wartościami można wykonać polecenie (używając na
przykład metody execute()).

Procedury przechowywane
w bazie danych

 Przykład procedury napisanej w PL/SQL:
CREATE OR REPLACEPROCEDURE daj_wiek (

id IN INTEGER,
w OUT INTEGER

) IS
BEGIN

SELECT wiek INTO w FROM osoba
WHERE osoba.id = id

EXCEPTION
WHEN NO_DATA_FOUND
THEN w := -1;

WHEN OTHERS
THEN NULL;

END;

 Przykład programu korzystającego z powyższej procedury:
String st = ”{call daj_wiek(?,?)}”;
CallableStatement cstm = conn.prepareCall(st);
cstm.registerOutParameter(2,java.sql.Types.ITEGER);
cstm.setInt(1,id);
cstm.execute();

Wsadowe zapytania modyfikujące

 Polecenia modyfikujące (INSERT, DELETE i
UPDATE) można wysłać do bazy danych w postaci
bloku poleceń, wykorzystując obiekt Statement.

 Metoda addBatch(”…”) dodaje polecenie do
kolekcji poleceń w obiekcie Statement.

 Polecenia wsadowe są wykonywane za pomocą
metody executeBatch() w takiej kolejności w
jakiej były dodawane do Statement; metoda
executeBatch() zwraca tablicę int[], w
której są umieszczane wyniki wykonania kolejnych
poleceń.

Literatura (JDBC)

 M.Grochala: Java – aplikacje bazodanowe Wydanie 2.
Rozdział 5: JDBC, rozdział 6: URL w aplikacjach
bazodanowych, rozdział 7: Aplikacje bazodanowe, rozdział
9: Zaawansowane techniki obsługi bazy danych.
Wydawnictwo HELION, Gliwice 2001.

 K.Barteczko: Java – od podstaw do technologii. Tom 2,
część C, rozdział 1: Java i bazy danych (JDBC).
Wydawnictwo MIKOM, Warszawa 2004.

 C.S.Horstmann, G.Cornell: Core Java – techniki
zaawansowane. Wydanie 8. Rozdział 4: Połączenia do baz
danych (JDBC). Wydawnictwo HELION, Gliwice 2009.

 JDBC(TM) Tutorial: http://download.oracle.com/
javase/tutorial/jdbc/

http://download.oracle.com/%0bjavase/tutorial/jdbc/

	Slajd 1: JDBC – aplikacje bazodanowe
	Slajd 2: Relacyjne bazy danych
	Slajd 3: Relacyjne bazy danych
	Slajd 4: Relacyjne bazy danych
	Slajd 5: Relacyjne bazy danych
	Slajd 6: Relacyjne bazy danych
	Slajd 7: Relacyjne bazy danych
	Slajd 8: JDBC
	Slajd 9: JDBC
	Slajd 10: Architektura aplikacji bazodanowych
	Slajd 11: Architektura aplikacji bazodanowych
	Slajd 12: Struktura JDBC
	Slajd 13: Struktura JDBC
	Slajd 14: Sterowniki JDBC
	Slajd 15: URL dla bazy danych
	Slajd 16: URL dla bazy danych
	Slajd 17: Pliki JAR zawierające sterownik do RDBMS
	Slajd 18: Pliki JAR zawierające sterownik do RDBMS
	Slajd 19: Metainformacje o bazie danych
	Slajd 20: Łączenie się z bazą danych
	Slajd 21: Wykonywanie zapytań do bazy
	Slajd 22: Wyjątki SQL
	Slajd 23: Przykład prostego użycia JDBC
	Slajd 24: Modyfikowanie danych w bazie
	Slajd 25: Polecenia SQLowe do bazy
	Slajd 26: Obsługa pól z wartością NULL
	Slajd 27: Jak zarejestrować bazę w ODBC (Windows 11)
	Slajd 28: Obsługa transakcji
	Slajd 29: Obiekt ResultSet
	Slajd 30: Obiekt ResultSet
	Slajd 31: Obiekt ResultSet
	Slajd 32: Obiekt ResultSet
	Slajd 33: Obiekt ResultSet
	Slajd 34: Obiekt ResultSet
	Slajd 35: Modyfikowanie rekordów
	Slajd 36: Usuwanie rekordów
	Slajd 37: Wstawianie rekordów
	Slajd 38: Metainformacje o bazie danych
	Slajd 39: Metainformacje o tabeli wynikowej
	Slajd 40: Bezpieczeństwo transakcji
	Slajd 41: Zapytanie preinterpretowane
	Slajd 42: Procedury przechowywane w bazie danych
	Slajd 43: Procedury przechowywane w bazie danych
	Slajd 44: Wsadowe zapytania modyfikujące
	Slajd 45: Literatura (JDBC)

