
Instytut Informatyki
Wydział Matematyki i Informatyki

Uniwersytet Wrocławski

PRZEMYSŁAW GOSPODARCZYK

OBNIŻANIE STOPNIA I SCALANIE
KRZYWYCH BÉZIERA

Praca doktorska

Promotor: dr hab. Paweł Woźny

Wrocław 2016

Institute of Computer Science
Department of Mathematics and Computer Science

University of Wrocław

PRZEMYSŁAW GOSPODARCZYK

DEGREE REDUCTION AND MERGING OF
BÉZIER CURVES

Ph.D. Thesis

Supervisor: dr hab. Paweł Woźny

Wrocław 2016

Acknowledgments

I would like to thank dr hab. Paweł Woźny and prof. Stanisław Lewanowicz for their valuable
comments and suggestions concerning this thesis.

Wrocław, February 2016

Streszczenie

W niniejszej pracy przedstawiono różne podejścia do problemów optymalnego, w sensie
normy średniokwadratowej, obniżania stopnia i scalania krzywych Béziera. Oba problemy
związane są z systemami projektowania wspomaganego komputerowo. W wypadku więk-
szości systemów tego typu istnieje górne ograniczenie na stopień krzywych, które mogą być
tam przetwarzane. Wspomniane ograniczenia zależą od konkretnego systemu i biorąc pod
uwagę dużą ich liczbę mogą różnic się one w znaczący sposób. W związku z tym, w celu
wymiany danych pomiędzy systemami, konieczna jest konwersja, którą zazwyczaj można
wykonać jedynie w sposób przybliżony. Dwie główne operacje tego typu to właśnie obniżanie
stopnia i scalanie krzywych.

Obniżanie stopnia krzywych Béziera polega na zastąpieniu oryginalnej krzywej Béziera
stopnia n, inną krzywą Béziera niższego stopnia m. Ponadto zwykle wymaga się, aby szukana
krzywa spełniała pewne dodatkowe ograniczenia na końcach przedziału parametryzacji. Na-
jczęściej są to warunki ciągłości parametrycznej lub ich uogólnienie tj. warunki ciągłości
geometrycznej. Takie podejście do problemu nazywamy konwencjonalnym. Zaprezentowano
algorytmy konwencjonalnego obniżania stopnia krzywych Béziera z warunkami ciągłości ge-
ometrycznej. Oprócz tego zaproponowano nowe podejście do problemu obniżania stopnia pla-
narnych krzywych Béziera z warunkami ciągłości parametrycznej. Po raz pierwszy nałożono
tzw. ograniczenia obszaru zmienności punktów kontrolnych, co przyczyniło się do otrzymy-
wania krzywych, których punkty kontrolne rozmieszczone są w sposób bardziej intuicyjny.
Ten pomysł znacznie ułatwia dalsze modelowanie.

Scalanie krzywych Béziera polega na zastąpieniu dowolnej liczby sąsiadujących krzywych
Béziera pojedynczą krzywą Béziera określonego stopnia. Dodatkowo nakłada się podobne
ograniczenia jak w wypadku zadania obniżania stopnia. Podano algorytmy konwencjonalnego
scalania krzywych Béziera z warunkami ciągłości parametrycznej i geometrycznej. Ponadto
zaproponowano nowatorskie podejście do problemu scalania planarnych krzywych Béziera
z warunkami ciągłości parametrycznej. Podobnie jak w wypadku obniżania stopnia, pokazano
że nałożenie ograniczeń obszaru zmienności punktów kontrolnych pozwala uzyskać krzywe
będące bardziej użyteczne w praktyce.

W wypadku podejść konwencjonalnych wykorzystano pewne własności tzw. dualnych
wielomianów Bernsteina z ograniczeniami. W efekcie każda z zaprezentowanych metod ma
najniższą złożoność obliczeniową spośród wszystkich tego typu metod.

Ograniczenia obszaru zmienności punktów kontrolnych powodują, że oba problemy znacznie
trudniej rozwiązać. W tym celu można wykorzystać pewną metodę iteracyjną, którą da się
znacząco przyspieszyć stosując algorytmy szybkiej konstrukcji i modyfikacji baz dualnych.

Rozdział 1 zawiera wstępne informacje. W rozdziale 2 pokazano związek pomiędzy warunk-
ami ciągłości a szukanymi krzywymi. Pojęcie i własności baz dualnych zaprezentowano
w rozdziale 3. W rozdziale 4 rozwiązano zadanie obniżania stopnia krzywych Béziera z warunk-
ami ciągłości geometrycznej. Następnie sformułowano i rozwiązano problem obniżania stop-
nia planarnych krzywych Béziera z warunkami ciągłości parametrycznej i ograniczeniami ob-
szaru zmienności punktów kontrolnych (zob. rozdział 5). W rozdziałach 6 i 7 można znaleźć
metody scalania krzywych Béziera odpowiednio z warunkami ciągłości parametrycznej i geom-
etrycznej. W rozdziale 8 sformułowano i rozwiązano problem scalania planarnych krzywych
Béziera z warunkami ciągłości parametrycznej i ograniczeniami obszaru zmienności punktów
kontrolnych.

Abstract

In this thesis, various approaches to the problems of optimal degree reduction and merging
of Bézier curves with respect to the least squares norm are presented. Both problems are
associated with computer aided design systems. In most cases, a system is able to process
curves of upper-bounded degree. Maximum permissible degree depends on a system. Taking
into account that there are many different systems, those degrees can vary quite significantly.
As a consequence, the exchange of geometric data between systems often requires approximate
conversion. There are two main operations that should be considered: degree reduction and
merging.

Degree reduction of Bézier curves is to replace an original Bézier curve of degree n with
a different Bézier curve of lower degree m. Moreover, it is often required that the searched
curve satisfies some additional constraints at the endpoints. Those constraints are usually
parametric continuity conditions or their generalization, namely geometric continuity condi-
tions. Such an approach to the problem is called conventional. The algorithms of conventional
degree reduction of Bézier curves with geometric continuity conditions are presented. Fur-
thermore, a new approach to the problem of degree reduction of planar Bézier curves with
parametric continuity conditions is proposed. For the first time, the so-called box constraints
are imposed, which results in curves with more intuitive location of control points. This idea
makes further modeling much easier.

Merging of Bézier curves is to replace an arbitrary number of adjacent Bézier curves with
a single Bézier curve of certain degree. Additionally, one may impose similar constraints
as in the case of the degree reduction problem. The algorithms of conventional merging of
Bézier curves with parametric and geometric continuity conditions are given. Moreover, a
novel approach to the problem of merging of planar Bézier curves with parametric continuity
conditions is proposed. As in the case of degree reduction, it is shown that the imposition of
box constraints results in curves which are practically more useful.

In the case of the conventional approaches, certain properties of the so-called constrained
dual Bernstein polynomials are used. Consequently, each presented method has the lowest
computational complexity among all existing methods.

The box constraints make both problems much more difficult to solve. To deal with
them, one may use a certain iterative method, which can be significantly improved using fast
algorithms of construction and modification of dual bases.

Chapter 1 has a preliminary character. In Chapter 2, a relation between continuity con-
ditions and searched curves is shown. The concept and properties of dual bases are presented
in Chapter 3. In Chapter 4, the problem of degree reduction of Bézier curves with geomet-
ric continuity conditions is solved. Next, the problem of degree reduction of planar Bézier
curves with parametric continuity conditions and box constraints is formulated and solved
(see Chapter 5). In Chapters 6 and 7, one can find methods of merging of Bézier curves
with parametric and geometric continuity conditions, respectively. Finally, the problem of
merging of planar Bézier curves with parametric continuity conditions and box constraints is
formulated and solved (see Chapter 8).

Contents

1 Introduction 1

1.1 Computer aided design . 1
1.2 Computer aided geometric design . 2
1.3 Bernstein polynomials . 3
1.4 Bézier curves . 6
1.5 Composite Bézier curves . 10
1.6 Approximate conversion of Bézier curves – overview 11

1.6.1 Degree reduction of Bézier curves . 11
1.6.2 Merging of Bézier curves . 19

1.7 Outline of the thesis . 21

2 Continuity constraints 23

2.1 Parametric continuity constraints . 23
2.2 Geometric continuity constraints . 24
2.3 Hybrid continuity constraints . 27

3 Dual bases 28

3.1 Introduction . 28
3.2 Construction of dual bases . 29

3.2.1 A straightforward method . 29
3.2.2 An orthonormal basis approach . 30
3.2.3 A more sophisticated method (Dn =⇒ Dn+1) 30
3.2.4 A new method (Dn+1 =⇒ Dn) . 32

3.3 Dual Bernstein polynomials . 34
3.3.1 Connections between Bernstein and dual Bernstein bases 35
3.3.2 Computing the inner products

〈
Bn
j , D

(m,k,l)
i (·;α, β)

〉
αβ

. 36

4 Gk,l-constrained degree reduction of Bézier curves 39

4.1 Degree reduction of Bézier curves with prescribed boundary control points . . 39
4.2 Computing the continuity parameters . 42

4.2.1 Computing Gk,l parameters using quadratic and nonlinear program-
ming approach . 44

4.2.2 Computing Cp,q/Gk,l parameters by solving a system of linear equations 45
4.3 Explicit formulas for the continuity parameters 46

vi

4.3.1 G1,1-constrained case . 46
4.3.2 C1,1/G2,2-constrained case . 47
4.3.3 C1,−/G2,1-constrained case . 48
4.3.4 C−,1/G1,2-constrained case . 48

4.4 Algorithms . 49
4.4.1 Auxiliary computations . 49
4.4.2 Cp,q/Gk,l-constrained degree reduction algorithms 49
4.4.3 Gk,l-constrained degree reduction algorithm 52

4.5 Examples . 53

5 Degree reduction of planar Bézier curves with box constraints 58

5.1 Motivation . 58
5.2 Problem of degree reduction of planar Bézier curves with box constraints . . 61
5.3 Degree reduction using quadratic programming approach 62
5.4 Degree reduction using BVLS algorithm . 64
5.5 Solving the subproblem . 66

5.5.1 A straightforward method . 66
5.5.2 A method based on the properties of dual bases 67

5.6 Examples . 69

6 Ck,l-constrained merging of Bézier curves 76

6.1 Efficient subdivision of Bézier curves . 76
6.2 Solution and algorithm . 78
6.3 Examples . 81

7 Gk,l-constrained merging of Bézier curves 86

7.1 Computing the continuity parameters . 86
7.2 Algorithms . 88

7.2.1 Gk,l-constrained merging algorithm . 88
7.2.2 Outline of the Cp,q/Gk,l-constrained merging algorithm 90

7.3 Examples . 90

8 Merging of planar Bézier curves with box constraints 93

8.1 Motivation . 93
8.2 Problem of merging of planar Bézier curves with box constraints 95
8.3 Solution . 96

8.3.1 Quadratic programming with box constraints 96
8.4 Examples . 98

Bibliography 103

Index 110

vii

Chapter 1

Introduction

1.1 Computer aided design

According to [58], “Computer aided design (CAD) can be defined as the use of computer
systems to assist in the creation, modification, analysis or optimization of a design.” CAD
system consists of hardware and software. CAD hardware is usually a central processing unit
with multiple work stations and some input and output devices, e.g., monitors, keyboards,
mouses, printers, plotters and drafting equipment. CAD software is a computer program
which implements computer graphics and provides some necessary tools. A set of tools de-
pends on specific needs of a designer. CAD systems are helpful in creating precision drawings
and technical illustrations, therefore, they are useful for people of various professions, in-
cluding architects, engineers, drafters and artists. As a consequence, there are many types
of modeling systems for different applications, e.g., electronic design automation (EDA or
ECAD), mechanical design automation (MDA) and computer aided drafting.

In 1957, Patrick Hanratty, known as the Father of CAD, developed the first numerical
control manufacturing system called Program for Numerical Tooling Operations (PRONTO).
However, it is assumed that the ancestor of modern CAD systems is Sketchpad which was
developed by Ivan Sutherland in 1963 as a part of his Ph.D. thesis at MIT. It was the first
system ever to provide a complete graphical user interface. In addition, a user was able to
interact graphically with the system by drawing on a monitor with a light pen (see Figure 1).
In the late 1960s, large automotive and aerospace manufacturers created their own CAD
systems. Those systems were developed by internal groups in association with university
scientists. In the 1970s, due to fast development of computer industry and some major
advances in CAD software, CAD industry became a billion dollar hardware and software
business. In the 1980s, a decrease of prices of computers and maintenance costs made CAD
systems available to more users. For extensive history of CAD industry, see [98].

Nowadays, companies use CAD systems to design almost every product on the market
in the world. Those modern systems are based on interactive computer graphics (ICG),
i.e., an implementation of a user-friendly interface which displays interactive images. The
images consist of some basic objects, such as points, lines, curves, etc. To obtain a satisfying
result, a designer modifies the image using tools which are provided by the system. The
basic operations are scaling, translation, rotation and several other geometric transformations.
Additionally, some specialized methods required by a company should be available.

1

CHAPTER 1. INTRODUCTION 2

Figure 1: Ivan Sutherland’s Sketchpad console. (The figure was taken from [81].)

There are several reasons why the usage of CAD systems is profitable. First of all, those
systems increase efficiency of designers’ work. This is achieved by detailed visualization of
a designed object and by providing an efficient computing environment. Some tasks which
are now considered to be trivial, used to be very time consuming before CAD systems were
invented. Secondly, modeling systems improve the quality of a design by allowing to exper-
iment and investigate many different alternative solutions in a short time. Moreover, CAD
systems are very precise, therefore, number of possible errors is limited. In addition, drawings
made with such systems satisfy certain standardization criteria. This is helpful in making
a documentation of a design. More details on CAD systems can be found in [47, 58]. The
progress of CAD systems would not be possible if not for some crucial advances in the area
of curves and surfaces. In the next subsection, we look into a discipline which specializes in
the development of mathematical methods for curves and surfaces.

1.2 Computer aided geometric design

According to [33], “Computer aided geometric design (CAGD) is a discipline dealing with
computational aspects of geometric objects.” A need of application of mathematical methods
to certain geometric shapes arises in the areas of CAD, robotics and scientific visualization.
CAGD makes use of geometry, computer graphics, numerical analysis, approximation theory,
data structures and computer algebra. Moreover, there are some disciplines which are closely
related to CAGD, e.g., computational geometry, geometric modeling and data fitting.

The main focus of CAGD is the manipulation of curves and surfaces. Those are usu-
ally given by sets of points and have different parametric representations using polynomial
functions, piecewise polynomial functions, rational functions and piecewise rational functions.
The basic objects of CAGD are Bézier curves and surfaces, rational Bézier curves and sur-
faces, splines, B-spline curves and surfaces and Non-Uniform Rational B-Spline (NURBS)
curves and surfaces (see, e.g., [33, 85]). In this thesis, we are dealing with some important
problems concerning Bézier curves.

In 1944, Roy Liming wrote an innovative book [67], where he transformed the classical

CHAPTER 1. INTRODUCTION 3

drafting methods into certain computational techniques. During World War II, he worked for
North American Aviation (NAA). NAA used his work to build fighter planes. This was not the
first use of curves in aircraft industry, however, for the first time one could express blueprints
by numbers. Liming’s ideas have significantly limited a number of possible mistakes caused
by misinterpretations of drawings. In the 1950s, his approach was widely used by U.S. aircraft
companies. Another significant contribution came from the automotive industry. In the early
1960s, Paul de Casteljau, who worked for Citroën, and Pierre Bézier, who worked for Rénault,
developed independently Bézier curves and surfaces (see the pioneering papers [9–11, 24, 25]
and Figure 2). Further on in this chapter, we explain why this is considered to be a turning
point in CAGD. The term CAGD was used for the first time in 1974, by Robert Barnhill
and Richard Riesenfeld, during the conference at the University of Utah (for the proceedings
of this conference, see [5]). After this event, CAGD became a stand-alone discipline. Since
powerful computers have become accessible, there has been a fast progress in this area. More
detailed history of CAGD can be found in [34, §1]. See also [33, Preface and §1].

Figure 2: Cross sections of a car body. (The figure was taken from [12].)

More information about CAGD can be found in [33, 34].
In §§1.3–1.5, we focus our attention on terminology and some relevant facts about Bern-

stein polynomials, Bézier curves and composite Bézier curves.

1.3 Bernstein polynomials

In this subsection, we give the definition and some useful properties of Bernstein polynomials.
The features stated below are meaningful, since Bézier curves are expressed in terms of these
polynomials.

Bernstein polynomials of degree n are defined by

Bn
k (t) :=

(
n

k

)
tk(1− t)n−k (k = 0, 1, . . . , n), (1.1)

where
(
n
k

)
:= n!

k!(n−k)! is a binomial coefficient. For convenience, we assume that Bn
k (t) ≡ 0

if k < 0 or k > n. In the thesis, we limit ourselves to the interval t ∈ [0, 1] in which these
polynomials are useful from a practical point of view. See Figure 3.

CHAPTER 1. INTRODUCTION 4

Figure 3: Bernstein polynomials of degree 7 restricted to the interval [0, 1].

Now, we give a brief description of some basic properties of these polynomials.

1. Bernstein polynomials are nonnegative over the interval [0, 1].

2. Notice that Bn
k (0) = δk0 and Bn

k (1) = δkn, where δij , known as Kronecker delta, equals 1
if i = j, and 0 otherwise. Moreover, assuming that k 6= 0, Bn

k (t) has a root with multiplicity
k at t = 0. Similarly, when k 6= n, Bn

k (t) has a root with multiplicity n− k at t = 1.

3. Bernstein polynomials form a partition of unity,

n∑
k=0

Bn
k (t) = 1.

A simple proof is based on the binomial theorem (see, e.g., [33, §5.1]).

4. There is a symmetry Bn
n−k(1− t) ≡ Bn

k (t), which follows immediately from an elementary
identity of binomial coefficients, namely

(
n
k

)
=
(
n

n−k
)
.

5. It is well known that the product of two Bernstein polynomials can be written as

Bn
k (t)Bm

l (t) =

(
n
k

)(
m
l

)(
n+m
k+l

) Bn+m
k+l (t) (k = 0, 1, . . . , n; l = 0, 1, . . . ,m).

6. On the interval [0, 1], Bn
k (t) (n 6= 0) has a unique local maximum at t = k/n.

7. Let Πn denote the space of all polynomials of degree at most n. It is well known that the
Bernstein polynomials Bn

0 , B
n
1 , . . . , B

n
n form a basis of this space (for the proof, see [8, §10.2]).

CHAPTER 1. INTRODUCTION 5

8. Bernstein and monomial bases are related in the following way:

tk =
n∑
i=k

(
i
k

)(
n
k

)Bn
i (t), Bn

k (t) =
n∑
i=k

(−1)i−k
(
n

i

)(
i

k

)
ti (k = 0, 1, . . . , n).

The proofs are given in [42, §5.5.1]. In particular, for k = 0, the first formula becomes a
partition of unity (see, pt. 3). Notice that these identities can be used to prove the previous
property.

9. The following recurrence relation holds (for the proof, see [33, §5.1]):

Bn
k (t) = (1− t)Bn−1

k (t) + tBn−1
k−1 (t) (k = 0, 1, . . . , n). (1.2)

10. The subdivision formula is as follows:

Bn
k (ct) =

n∑
i=k

Bn
i (t)Bi

k(c) (k = 0, 1, . . . , n).

To prove this one, we apply the binomial expansion to the left-hand side of the equation.
Then, some simple calculations lead to the result.

11. The derivative of Bn
k can be represented as

d
dt
Bn
k (t) = n

[
Bn−1
k−1 (t)−Bn−1

k (t)
]
, (1.3)

which is fairly easy to verify. The rth derivative of Bn
k is given by the following formula:

dr

dtr
Bn
k (t) =

n!

(n− r)!

min(k,r)∑
i=max(0,k+r−n)

(−1)i+r
(
r

i

)
Bn−r
k−i (t) (r = 1, 2, . . .).

See [28, Theorem 3.1], for the inductive proof of this identity.

12. The integrals of Bn
k can be expressed as∫ u

0
Bn
k (t) dt =

1

n+ 1

n+1∑
i=k+1

Bn+1
i (u),

∫ 1

0
Bn
k (t) dt =

1

n+ 1
.

The first formula, which obviously yields the second one, can be proven using the technique
of integration by parts.

13. There are three degree elevation formulas,

tBn
k (t) =

k + 1

n+ 1
Bn+1
k+1 (t), (1− t)Bn

k (t) =

(
1− k

n+ 1

)
Bn+1
k (t),

Bn
k (t) =

(
1− k

n+ 1

)
Bn+1
k (t) +

k + 1

n+ 1
Bn+1
k+1 (t),

for k = 0, 1, . . . , n. The first two of these, which clearly imply the third one, are evident.

CHAPTER 1. INTRODUCTION 6

As we shall see in the next subsection, the above-mentioned facts have a key impact on
the attributes of Bézier curves. For further properties of Bernstein polynomials, see [36, §5.1].

Bernstein polynomials were introduced by Sergei Natanovich Bernstein in 1912. His goal
was to prove the Weierstrass approximation theorem, i.e., to show that one can use poly-
nomials to approximate every continuous function, with a chosen precision, over any closed
and bounded interval. Bernstein provided an explicit converging sequence of polynomials,
therefore, the proof is constructive (see, e.g., [23, §10.3]). However, the convergence is very
slow. For that reason, significance of the proof is only theoretical. As it turned out in the
early 1960s, Bernstein polynomials have found their more practical application in the area of
curves and surfaces. In the next subsection, we explain this application. More information
on the history of Bernstein polynomials is available in [36, §§1–4]. Some other applications
of these polynomials are given in [36, §9].

1.4 Bézier curves

We start this subsection with the definition of a Bézier curve.
Let Πd

n denote the space of all parametric polynomials in Rd of degree at most n; Π1
n ≡ Πn

(cf. §1.3, pt. 7). A Bézier curve P ∈ Πd
n is the following parametric curve:

P (t) :=
n∑
i=0

piB
n
i (t) (t ∈ [0, 1]), (1.4)

where p0, p1, . . . , pn ∈ Rd are called control points (or Bézier points), n is the degree of the
curve, and Bn

0 , B
n
1 , . . . , B

n
n are Bernstein polynomials of degree n given by (1.1).

Example 1.1. Consider the following example of a cubic (n = 3) Bézier curve in R2, defined
by the control points (0, 0), (0.2, 0.95), (0.66, 1), (1, 0.15). The polygon formed by connect-
ing the consecutive control points with lines is called control polygon (or Bézier polygon).
See Figure 4.

Figure 4: A simple cubic Bézier curve with its control points and the corresponding control polygon.

CHAPTER 1. INTRODUCTION 7

In the early 1960s, the intention of Paul de Casteljau and Pierre Bézier was to create some
new computer-implemented techniques which would allow for intuitive design of automobile
bodies. Such free-form shapes could not be described with any basic geometric quantities.
Therefore, they had to find some other way to represent them with finite data. A polynomial
curve seemed to be the right choice, however, appropriate basis had to be selected. Then,
the curve could be represented with the coefficients of the linear combination. Selection of
a proper basis was crucial. The most obvious choice, i.e., the monomial basis, is completely
unsuitable, mainly due to its lack of insight into a geometrical behavior of the curve. In
addition, numerical properties of some fundamental methods associated with this basis are
poor (see, e.g., [85, §1.3]). Bernstein polynomial basis, on the other hand, is much better in
this regard (see [22, 35, 37, 38]). Further on in this subsection, we give some arguments to
support this statement. More facts about the work of Paul de Casteljau and Pierre Bézier
can be found in [9–11], [12, §1], [24–26], [33, §1] and [36, §4].

Now, we briefly characterize some fundamental properties of Bézier curves.

1. A Bézier curve passes through its first and last control points, i.e., P (0) = p0 and P (1) =
pn. Taking into account the well-known properties of Bernstein polynomials (see §1.3, pt. 2),
the above-mentioned fact, known as the endpoint interpolation property, is obvious. In general,
a Bézier curve does not interpolate the remaining control points.

2. A Bézier curve lies in the convex hull of its control points. This so-called convex hull
property follows from §1.3, pts. 1 and 3.

3. Given the fact that barycentric combinations are invariant under affine transformations,
the property §1.3, pt. 3 implies the affine invariance of a Bézier curve.

4. We are able to define a Bézier curve over t ∈ [a, b], using the formula

P (t) :=

n∑
i=0

piB
n
i (u) (u := (t− a)/(b− a)).

This property is called invariance under affine parameter transformations.

5. Remembering the symmetry property of Bernstein polynomials (see §1.3, pt. 4), we observe
that

n∑
i=0

piB
n
i (t) =

n∑
i=0

pn−iB
n
i (1− t)

and conclude that the control points p0, p1, . . . , pn and pn, pn−1, . . . , p0 represent the same
Bézier curve. However, note that the traversal directions are different.

6. The derivative of nth degree Bézier curve P is the following vector:

P ′(t) = n
n−1∑
i=0

(pi+1 − pi)Bn−1
i (t). (1.5)

Clearly, this identity can be easily proven using (1.3) (see, e.g., [85, §1.3]). Higher order
derivatives of P can be obtained by repeated application of the formula (1.5). As a result,
one can prove by induction that the rth derivative of P can be written as

P (r)(t) =
n!

(n− r)!

n−r∑
i=0

∆rpiB
n−r
i (t) (r = 1, 2, . . .),

CHAPTER 1. INTRODUCTION 8

where ∆ is the forward difference operator defined recursively,

∆0pi := pi, ∆rpi := ∆r−1pi+1 −∆r−1pi (r = 1, 2, . . .), (1.6)

and explicitly (see, e.g., [82, Lemma 4.1]),

∆rpi :=
r∑
j=0

(−1)r+j
(
r

j

)
pi+j (r = 0, 1, . . .). (1.7)

Notice that for t = 0, 1, the following formulas hold:

P (r)(0) =
n!

(n− r)!
∆rp0, P (r)(1) =

n!

(n− r)!
∆rpn−r. (1.8)

As we shall see later, these cases are particularly important.

7. It is possible to express a Bézier curve of degree n in the Bernstein basis of degree n+ 1.
To do so, we recall the degree elevation formulas (see §1.3, pt. 13) and apply some simple
manipulations (see, e.g., [33, §6.1]). As a result, we get

P (t) :=
n∑
i=0

piB
n
i (t) =

n+1∑
i=0

q
(1)
i Bn+1

i (t),

where

q
(1)
i :=

i

n+ 1
pi−1 +

(
1− i

n+ 1

)
pi (i = 1, 2, . . . , n), (1.9)

q
(1)
0 := p0 and q(1)

n+1 := pn. In order to find representation in the Bernstein basis of degree n+r,
the unit degree elevation formula can be applied repeatedly. However, there is a well-known
explicit formula,

P (t) :=
n∑
i=0

piB
n
i (t) =

n+r∑
i=0

q
(r)
i Bn+r

i (t),

where

q
(r)
i :=

min{n,i}∑
j=max{0,i−r}

pj

(
n

j

) (r
i−j
)(

n+r
i

) (i = 0, 1, . . . , n+ r).

This r-fold degree elevation formula can be proven by induction.

8. Let P (t) ≡ Pn(p0, p1, . . . , pn). The identity (1.2) leads to the following recurrence relation:

Pn(p0, p1, . . . , pn) = (1− t)Pn−1(p0, p1, . . . , pn−1) + tPn−1(p1, p2, . . . , pn),

which yields the most fundamental algorithm associated with Bézier curves, namely de Castel-
jau algorithm. Assume that t0 is fixed, then P (t0) can be evaluated using Algorithm 1.2.

CHAPTER 1. INTRODUCTION 9

Algorithm 1.2 ([24, 25]). [de Casteljau algorithm]

Input: value of parameter t0 ∈ [0, 1], control points pi ≡ p(0)
i (i = 0, 1, . . . , n)

Output: point on a curve, i.e., P (t0) ≡ p(n)
0

Step 1. For j = 1, 2, . . . , n, compute

p
(j)
i := (1− t0) · p(j−1)

i + t0 · p(j−1)
i+1 (i = 0, 1, . . . , n− j).

Step 2. Return p
(n)
0 .

Clearly, the complexity of the algorithm is O(n2). This simple method has a meaningful and
intuitive geometric interpretation. We subdivide each line segment of the control polygon
with the ratio t0 : (1 − t0). Next, we connect the resulting points to get a new polygon
which is shorter by one segment. We repeat these operations until we get a single point. To
visualize this geometric construction, let us revisit Example 1.1. We set t0 := 0.6 and apply
the algorithm. For the result, see Figure 5.

Figure 5: Geometric interpretation of de Casteljau algorithm applied to the cubic Bézier curve (see Example 1.1).

From a historical perspective, de Casteljau algorithm was the first and crucial step towards
the development of Bézier curves. For extensive information on this algorithm, we recom-
mend [12]. See also [33, §4].
To evaluate a point on a Bézier curve, one could also use a linear time algorithm related to
the Horner scheme (also known as Horner’s method and Horner’s rule) which is associated
with the monomial basis (see, e.g., [86, §2.3]). However, if coefficients of the monomial form
vary greatly in magnitude, then this approach should be avoided because of round-off errors
(see [22, 37, 38, 85]).

CHAPTER 1. INTRODUCTION 10

9. De Casteljau algorithm can be used to subdivide a Bézier curve. Suppose that we subdivide
the curve (1.4) at t = t0. Consequently, we obtain two nth degree Bézier curves corresponding
to the intervals [0, t0] and [t0, 1], respectively. It can be proven (see, e.g., [16, §27]) that the
control points of those curves are

p0, p
(1)
0 , . . . , p

(n)
0 and p

(n)
0 , p

(n−1)
1 , . . . , pn,

respectively.

One of the major advantages of Bézier curves is that they can be easily joined to form
a more complex shape. In the next subsection, we investigate this possibility. For further
properties of Bézier curves, see [33, §§4–6].

1.5 Composite Bézier curves

A single Bézier curve is not flexible enough to represent more complex shapes. In practice,
there are two options to deal with this issue. The first strategy is to add some new control
points and, therefore, increase the degree of a single curve (see §1.4, pt. 7). Unfortunately,
many CAD systems have their limitations on the maximum degree of curves that can be
processed. Furthermore, modeling of higher degree curves can be uncomfortable since the
modification of a single control point affects the whole curve. In addition, such curves are
more expensive to evaluate. Alternatively, one can construct a piecewise parametric curve of
several segments. Each segment is a Bézier curve smoothly connected with the adjacent ones.
Quadratic (degree 2) and cubic (degree 3) segments are the most common and the easiest to
work with. However, one must pay special attention to the continuity at the endpoints. This
might be inconvenient during the modeling process.

Now, we give the formal definition of a composite Bézier curve. Let 0 = t0 < t1 <
. . . < ts = 1 be a partition of the interval [0, 1]. A composite Bézier curve (also known as
piecewise Bézier curve and Bézier spline) P is a piecewise parametric curve which in the
interval [ti−1, ti] (i = 1, 2, . . . , s) is exactly represented as a Bézier curve P i ∈ Πd

ni
,

P (t) = P i(t) :=

ni∑
j=0

pij B
ni
j

(
t− ti−1

∆ti−1

)
(t ∈ [ti−1, ti]),

where pij ∈ Rd.

Example 1.3. We introduce the composite Bézier curve “D”, formed by three cubic seg-
ments which are defined by the control points {(0.75, 1.05), (0.69, 0.8), (0.6, 0.19), (0.47, 0.48)},
{(0.47, 0.48), (0.41, 0.63), (0.85, 0.27), (1.01, 0.45)} and {(1.01, 0.45), (1.22, 0.68), (1.26, 1.25),
(0.64, 1.09)}, respectively (see Figure 6a). The partition of the interval [0, 1] is as follows:
t0 = 0, t1 = 0.32, t2 = 0.56, t3 = 1. Figure 6b illustrates the smoothness of this composite
curve. A human eye is unable to notice the endpoints of the consecutive segments.

CHAPTER 1. INTRODUCTION 11

(a) (b)

Figure 6: The composite Bézier curve “D”. In Figure (a), each segment and the corresponding control points are marked
with a different color.

More information on composite Bézier curves can be found in [33, §5.5].

1.6 Approximate conversion of Bézier curves – overview

In most cases, a modeling system is able to process curves of degrees less or equal to a fixed
maximum degree. The maximum degree depends on a system. Consequently, those degrees
can vary quite significantly. Since there are many ways to represent curves, the exchange of
geometric data between CAD systems often requires approximate conversion. Moreover, some
operations, such as trimming, may result in degree elevation (see, e.g., [92, §1]). Therefore,
it may happen that a CAD system is unable to handle the resulting curve and conversion
is necessary. As it was stated in the pioneering paper by Hoschek [50], there are two main
operations that should be considered: degree reduction and merging. Those procedures are of
great importance not only because of the limitations of some modeling systems. Both of them
can be applied for the sake of data compression and data comparison. In this thesis, various
approaches to the problems of degree reduction and merging of Bézier curves are studied.

1.6.1 Degree reduction of Bézier curves

To begin with, we formulate the problem of unconstrained degree reduction of Bézier curves.
This is the most basic version of the degree reduction problem.

CHAPTER 1. INTRODUCTION 12

Problem 1.4. [Unconstrained degree reduction of Bézier curves]
Approximate an original Bézier curve

P (t) :=

n∑
i=0

piB
n
i (t)

with another Bézier curve

R(t) :=
m∑
i=0

riB
m
i (t)

of lower degree (m < n).

First of all, one should be aware that, in general, exact degree reduction is not possible.
It can only be done in the case of degree elevated curves (see §1.4, pt. 7). To detect the
redundancy, one has to know the true degree of the original curve. This is much easier to
determine if the curve is in the monomial form,

P (t) =
n∑
i=0

ait
i,

where

ai :=
i∑

j=0

(−1)i−j
(
n

i

)(
i

j

)
pj (i = 0, 1, . . . , n)

(cf. §1.3, pt. 8). Clearly, if an = an−1 = . . . = an−r+1 = 0 6= an−r and m ≥ n− r, then we are
able to reverse the process of degree elevation and get the exact result, namely the control
points

ri =

i∑
j=0

(−1)i−j

(
i−j+n−m−1
n−m−1

)(
n
j

)(
m
i

) pj (i = 0, 1, . . . ,m)

(see [36, 38]). This type of strategy can also be used in the general case (see [32, 33, 40, 54, 83–
85, 95]), i.e., we pretend that P is a degree elevated curve and reverse the imagined degree
elevation process. However, the results of this approach are rather poor (see Example 1.5).

In practice, a designer is dealing with large scenes formed by many Bézier curves joined
end-to-end. To maintain these connections, one must impose some continuity constraints
at the endpoints. Let us consider the most elementary restrictions, namely the endpoint
interpolation constraints,

P (0) = R(0), P (1) = R(1). (1.10)

These conditions imply that r0 = p0 and rm = pn (see §1.4, pt. 1), thus they are very easy to
satisfy.

Example 1.5. Now, let us examine the algorithm of Piegl and Tiller (see [84], [85, §5.6] or
[54]). For a given Bézier curve of degree n, their approach is to rewrite the degree elevation
formula (1.9) and obtain a curve of degree n − 1. Obviously, a Bézier curve of any degree
m (m < n) can be computed by the repeated application of the algorithm. In addition,
the resulting curve always satisfies the conditions (1.10). A more detailed description of
the method is given in the above-mentioned sources. For the purposes of the experiment,
we consider the Bézier curve “alpha” of degree 11. The control points are given in [103,

CHAPTER 1. INTRODUCTION 13

Example 6.1]. Figure 7a illustrates the original curve with its control points. We apply the
algorithm multiple times in order to obtain Bézier curves of degrees 10, 9 and 6. In each case,
we compute the maximum error

E∞ := max
t∈TM

‖P (t)−R(t)‖ ≈ max
t∈[0, 1]

‖P (t)−R(t)‖, (1.11)

where ‖·‖ denotes the Euclidean vector norm, and TM := {0, 1/M, 2/M, . . . , 1} withM := 500.
The results are presented in Figure 7b.

(a) (b)

Figure 7: Figure (a) shows the original Bézier curve with its control points. In Figure (b), we see the results of reduction
from degree 11 (blue solid line) to degrees 10 (red dashed line), 9 (green dash-dotted line) and 6 (black dotted line),
using the method of Piegl and Tiller [84].

As we consider the resulting curves of different degrees, it can be seen that the only accept-
able one is that of degree 10 (E∞ = 3.30e+0). However, even in this case, the error is quite
significant. Clearly, the curves of degrees 9 (E∞ = 2.81e+1) and 6 (E∞ = 8.47e+1) are un-
satisfactory. Taking into account these poor results, algorithms of such a type are considered
to be obsolete and should be avoided in contemporary CAD systems. As we shall see, there
are some modern methods which lead to much better results.

In the case of Bézier curves without the redundancy, the only reasonable approach to
the problem is to minimize a properly defined error function. Error of the approximation is
usually measured using L2-norm (least squares approximation),

‖P −R‖L2 :=

√∫ 1

0
‖P (t)−R(t)‖2 dt, (1.12)

weighted L2-norm (weighted least squares approximation),

‖P −R‖(α,β)
L2

:=

√∫ 1

0
(1− t)αtβ‖P (t)−R(t)‖2 dt (α, β > −1), (1.13)

CHAPTER 1. INTRODUCTION 14

or L∞-norm (uniform approximation),

‖P −R‖L∞ := max
t∈[0, 1]

‖P (t)−R(t)‖,

where ‖ · ‖ denotes the Euclidean vector norm. Notice that ‖ · ‖L2 ≡ ‖ · ‖
(0,0)
L2

.
Degree reduction of Bézier curves with respect to the L∞-norm (see [1, 13, 15, 18, 30,

55, 57, 95, 97]) is no longer studied. The algorithms are mainly based on the properties
of the so-called constrained Chebyshev polynomials (see, e.g., [57, §3]). In general, those
polynomials cannot be represented in the explicit form, therefore, one has to implement a
Remes-type algorithm to approximate them. Consequently, such methods are rather slow,
complicated and there are no explicit formulas for an optimal solution. Alternatively, one can
use the so-called constrained Jacobi polynomials (see, e.g., [55, §2 and §4]) to obtain explicitly
a fairly good (but not optimal) approximation. In [18], one can find another explicit method
of the nearly best uniform approximation, which is compared with the explicit optimal least
squares approximation algorithm. As it turns out, the latter approach gives more accurate
results. Further on in this thesis, the uniform approximation is omitted because of the above-
mentioned drawbacks.

Degree reduction of Bézier curves with respect to the L2-norm (and weighted L2-norm) has
been extensively studied (see [2, 3, 15, 18, 31, 44, 60, 68, 70, 73, 74, 76–79, 89–92, 94, 95, 103,
110–114]). Most of the algorithms solve a system of normal equations (see, e.g., [92]). This
simple approach is computationally expensive, i.e., the complexity is O(m3) (cf. Problem 1.4).
Furthermore, it suffers from poor numerical properties, since it involves matrix inversion. As
is well known, orthogonal polynomials play a crucial role in the theory of the least squares
approximation. However, Bernstein polynomials are not orthogonal. To overcome this dif-
ficulty, one can use certain transformations between Bernstein and orthogonal polynomial
bases, e.g., Chebyshev polynomials of the first kind (see [89]), Chebyshev polynomials of the
second kind (see [78]) or Legendre polynomials (see [60]). Unfortunately, the cost of those
transformations is cubic with respect to n. Moreover, according to [78], degree reduction by
the transformation matrices may be ill-conditioned. In [103], Woźny and Lewanowicz propose
a more sophisticated approach which is based on the use of the so-called dual Bernstein basis
polynomials. More information on those polynomials can be found in §3.3. The complexity
of the method is O(nm), which is significantly less than complexity of other known methods.
Additionally, the algorithm avoids matrix inversion and explicit basis transformation. In [44],
which is the author’s joint work with Lewanowicz and Woźny, one can find a generalization of
the previously mentioned approach. For a detailed description of this method, see Chapter 4.

In [17], degree reduction of Bézier curves with respect to the Hausdorff distance,

dH(P,R) := max

{
max
p∈P

min
r∈R
‖p− r‖, max

r∈R
min
p∈P
‖p− r‖

}
, (1.14)

is introduced. However, it is difficult to minimize (1.14) directly. The authors of [17] use
reparametrization of the original curve and they minimize the following L2-distance:√∫ 1

0
‖P (ϕ(t))−R(t)‖2 dt,

where ϕ : [0, 1]→ [0, 1] is a strictly increasing continuous function such that P (ϕ(t0)) is the
closest point to R(t0) for all t0 ∈ [0, 1]. They claim that this approach produces an effect
which is similar to the result of minimization of (1.14).

CHAPTER 1. INTRODUCTION 15

Example 1.6. Once again, let us consider the Bézier curve “alpha” of degree 11 (see Ex-
ample 1.5). This time, we apply the algorithm of Woźny and Lewanowicz [103] in order to
perform an optimal degree reduction with respect to the L2-norm (α = β = 0). As in the
previous example, we impose the endpoint interpolation constraints (1.10). The results are
shown in Figure 8 (cf. Figure 7b). Clearly, the resulting curves of degrees 10 (E∞ = 2.98e−2)
and 9 (E∞ = 1.19e−1) are perfect. In contrast to the previous example, a human eye is
unable to distinguish them from the original curve. As it turns out, it is also possible to
obtain satisfactory curve of degree 6 (E∞ = 2.57e+0). Compare the maximum errors with
the ones from Example 1.5. Obviously, the approach of Woźny and Lewanowicz [103] is much
better than that of Piegl and Tiller [84] (cf. Figure 7b).

Figure 8: Optimal degree reduction with respect to the L2-norm. The Bézier curve of degree 11 (blue solid line) reduced
to the Bézier curves of the following degrees: 10 (red dashed line), 9 (green dash-dotted line) and 6 (black dotted line).

In the case of degree reduction of many Bézier curves joined end-to-end, the endpoint
interpolation constraints (1.10) guarantee maintenance of the connections. However, those
minimal continuity requirements do not rule out rough edges and corners. In many practical
cases, a goal is to preserve smooth connections (see §1.5). That is to say, a human eye should
not be able to notice the endpoints of the adjacent curves. In order to see the issue clearly,
let us consider the following example.

Example 1.7. Let P and Q denote two adjacent Bézier curves of degrees 5 and 6, de-
fined by the control points {(2.5, 0), (3.5, 1), (4.5, 1.5), (5, 3.5), (5.7, 4), (6, 3.3)} and {(6, 3.3),
(6.23, 2.76), (7.5, 3), (8.5, 4.5), (9, 3), (10, 6), (11, 1)}, respectively (cf. [115, Example 2]). See
Figure 9a. Clearly, these curves connect in a smooth way. Now, we apply the algorithm of
Woźny and Lewanowicz [103] separately to each curve. As a result, we obtain two Bézier
curves R and S of degrees 3 (E∞ = 7.06e−2) and 4 (E∞ = 1.66e−1), respectively. Both
of them satisfy the endpoint interpolation constraints. Unfortunately, these restrictions are
insufficient, i.e., the connection is not smooth enough (see Figure 9b). To avoid this defect,
we must additionally preserve the continuity of the derivatives at the endpoints,

P ′(1) = R′(1), Q′(0) = S′(0). (1.15)

CHAPTER 1. INTRODUCTION 16

The algorithm of Woźny and Lewanowicz [103] allows us to impose such conditions. Once
again, we obtain two Bézier curves of degrees 3 (E∞ = 8.29e−2) and 4 (E∞ = 2.30e−1). This
time, the connection is smooth (see Figure 8c). However, one should realize that because of
the additional restrictions, the approximation errors must be inevitably larger than for the
previous results.

(a)

(b)

CHAPTER 1. INTRODUCTION 17

(c)

Figure 7: Let t ∈ [0.8, 1] for the left curve and t ∈ [0, 0.2] for the right one. Figure (a) shows two original Bézier
curves of degrees 5 and 6. In Figure (b), we see two reduced Bézier curves of degrees 3 and 4 satisfying the endpoint
interpolation constraints. The curves in Figure (c) additionally fulfill the conditions (1.15).

Example 1.7 shows the importance of continuous derivative. In fact, one can go even
further and preserve the continuity of higher order derivatives. These requirements constitute
the so-called parametric continuity constraints (also known as Ck,l continuity constraints).
Now, we formulate the problem of Ck,l-constrained degree reduction of Bézier curves.

Problem 1.8. [Ck,l-constrained degree reduction of Bézier curves]
For a given Bézier curve P of degree n,

P (t) :=

n∑
i=0

piB
n
i (t),

find a Bézier curve R of lower degree m,

R(t) :=

m∑
i=0

riB
m
i (t),

so that the following conditions are satisfied:

(i) weighted L2-error

‖P −R‖(α,β)
L2

=

√∫ 1

0
(1− t)αtβ‖P (t)−R(t)‖2 dt (α, β > −1)

is minimized in the space Πd
m;

(ii) P and R are Ck,l-continuous (k, l ≥ −1 and k + l < m− 1) at the endpoints, i.e.,

R(i)(0) = P (i)(0) (i = 0, 1, . . . , k),

R(j)(1) = P (j)(1) (j = 0, 1, . . . , l).

}
(1.16)

CHAPTER 1. INTRODUCTION 18

Problems of the above type are discussed in many papers [2, 3, 18, 31, 73, 78, 94, 95, 103,
110–112], usually under some simplifying assumptions, e.g., α = β = 0 or k = l. Paper of
Woźny and Lewanowicz [103] deals with Problem 1.8 in its most general form. As we have
already mentioned, their approach has gained recognition because of the lowest computational
complexity and some good numerical properties. Consequently, it may seem that further
improvement in this area is impossible. However, in practice, Ck,l constraints tend to be too
restrictive. We shall see this in Chapter 4. As a result, Problem 1.8 is not as interesting as
it used to be (notice the publication dates of the above-mentioned articles). For a detailed
discussion on parametric continuity, see §2.1.

Now, we formulate the problem of Gk,l-constrained degree reduction of Bézier curves which
differs from Problem 1.8 in considering, instead of the conditions (1.16), the geometric conti-
nuity constraints (also known as Gk,l continuity constraints) at the endpoints of the curves.

Problem 1.9. [Gk,l-constrained degree reduction of Bézier curves]
For a given Bézier curve P of degree n,

P (t) :=

n∑
i=0

piB
n
i (t), (1.17)

find a Bézier curve R of lower degree m,

R(t) :=

m∑
i=0

riB
m
i (t), (1.18)

so that the following conditions are satisfied:

(i) weighted L2-error

‖P −R‖(α,β)
L2

=

√∫ 1

0
(1− t)αtβ‖P (t)−R(t)‖2 dt (α, β > −1) (1.19)

is minimized in the space Πd
m;

(ii) P and R are Gk,l-continuous (−1 ≤ k, l ≤ 3 and k + l < m− 1) at the endpoints, i.e.,

R(i)(t) = P (i)(ϕ(t)) (t = 0; i = 0, 1, . . . , k),

R(j)(t) = P (j)(ϕ(t)) (t = 1; j = 0, 1, . . . , l),

}
(1.20)

where ϕ : [0, 1]→ [0, 1] is a strictly increasing function with ϕ(0) = 0 and ϕ(1) = 1.

Notice that, in general, curves which are Gk,l-continuous can be Ck,l-continuous after
a proper reparametrization. Clearly, Ck,l continuity implies Gk,l continuity. However, the
converse, is not necessarily true. Therefore, geometric continuity is more general and there is
a certain flexibility which leaves some room for further optimization. Problem 1.9 has been
recently discussed in several papers (see [44, 68, 70, 74, 76, 77, 91, 92, 113, 114]). The vast
majority of them simplify the problem by assuming that ϕ′(0) = ϕ′(1) = 1, which implies,
e.g., the hybrid C1,1/G2,2-constrained degree reduction, meaning that we impose constraints
of C1,1 continuity, followed by G2,2 continuity, at the endpoints. As it turns out, it is possible

CHAPTER 1. INTRODUCTION 19

to apply an extended version of the method by Woźny and Lewanowicz [103] as an essential
part of the algorithm of solving Problem 1.9. Such an approach is proposed in the author’s
joint work with Lewanowicz and Woźny [44]. It is worth mentioning that this is the only
paper dealing with Problem 1.9 in its most general form. For details, see Chapter 4. More
information on the Gk,l continuity can be found in §2.2. In addition, we also discuss in detail
the hybrid continuity constraints (also known as Cp,q/Gk,l continuity constraints). See §2.3.

As we have seen, conventional degree reduction of Bézier curves is to minimize a chosen
error function subject to some continuity constraints at the endpoints. As a result of this
common strategy, one may obtain control points which are located far away from the plot
of the curve. Consequently, it may happen that further editing of the resulting curve can
be difficult or even impossible. In Chapter 5, which is based on papers [43, 46], we give
appropriate examples to illustrate this issue. Then, we propose a new approach to the problem
of Ck,l-constrained degree reduction of planar Bézier curves by imposing the so-called box
constraints. Next, we present two methods of solving the new problem. They are completely
different than in the case of the conventional approach. Finally, we obtain curves which are
suitable for further modification and applications.

1.6.2 Merging of Bézier curves

Conventional merging of Bézier curves is to approximate a composite Bézier curve with a
single Bézier curve which minimizes a selected error function and satisfies certain continuity
constraints at the endpoints.

As already noted, degree reduction of Bézier curves has been extensively studied. In
contrast, the number of articles dealing with the problem of merging is rather limited (see [19,
20, 45, 50, 51, 69, 71, 72, 75, 96, 102, 115]). It is noteworthy that papers [19, 96] deal with
merging of B-spline curves. A B-spline curve is a generalization of a Bézier curve (see, e.g., [85,
§3]). Nevertheless, further on in this thesis, we limit ourselves to Bézier curves.

Notice that in papers [20, 50, 51, 69, 72], the so-called l2-norm is used (see, e.g., [72, (7)]),
which is simpler than the L2-norm. However, according to the comparison by Lu [72, §5], the
latter is a better option. Therefore, further on in this thesis, we focus on the minimization of
the L2-error.

As it turns out, many observations concerning the degree reduction problem apply to the
merging problem as well. Taking into account some of the previous remarks, we formulate
the following problem of Ck,l-constrained merging of Bézier curves.

Problem 1.10. [Ck,l-constrained merging of Bézier curves]
Let 0 = t0 < t1 < . . . < ts = 1 be a partition of the interval [0, 1]. Let there be given a
composite Bézier curve P (t) (t ∈ [0, 1]) which in the interval [ti−1, ti] (i = 1, 2, . . . , s) is
exactly represented as a Bézier curve P i(t) of degree ni, i.e.,

P (t) = P i(t) :=

ni∑
j=0

pij B
ni
j

(
t− ti−1

∆ti−1

)
(t ∈ [ti−1, ti]). (1.21)

Find a Bézier curve of degree m (≥ maxi ni)

R(t) :=

m∑
j=0

rj B
m
j (t) (t ∈ [0, 1]) (1.22)

so that the following conditions are satisfied:

CHAPTER 1. INTRODUCTION 20

(i) L2-error

‖P −R‖L2 =

√∫ 1

0
‖P (t)−R(t)‖2 dt (1.23)

is minimized in the space Πd
m;

(ii) P and R are Ck,l-continuous at the endpoints, i.e.,

R(i)(0) = P (i)(0) (i = 0, 1, . . . , k),

R(j)(1) = P (j)(1) (j = 0, 1, . . . , l),

}
(1.24)

where k ≤ n1, l ≤ ns, k, l ≥ −1 and k + l < m− 1.

Problems of the above type are discussed in [51, 72, 102]. Hu et al. [51] deal with merging
of only two Bézier curves. Obviously, to merge more than two curves, one could use this algo-
rithm repeatedly. Unfortunately, such an approach increases the error of the approximation
as well as the computational cost. The other methods specialize in merging of more than
two Bézier curves at the same time. However, the approach of Lu [72] is based on solving a
system of normal equations. As in the case of degree reduction, this is a very straightforward
strategy which is computationally inefficient, i.e., the complexity is O(sm3). Moreover, it
suffers from poor numerical properties. In [102], which is the author’s joint work with Woźny
and Lewanowicz, a more sophisticated approach is proposed. It is based on the properties of
dual Bernstein basis polynomials. Consequently, the complexity of the algorithm is O(sm2),
the least among the existing algorithms. For details, see Chapter 6.

As already mentioned, the Ck,l constraints (1.24) can be generalized, i.e., one can impose
the Gk,l constraints instead. For that reason, we formulate the problem of Gk,l-constrained
merging of Bézier curves.

Problem 1.11. [Gk,l-constrained merging of Bézier curves]
Let 0 = t0 < t1 < . . . < ts = 1 be a partition of the interval [0, 1]. Let there be given a
composite Bézier curve P (t) (t ∈ [0, 1]) which in the interval [ti−1, ti] (i = 1, 2, . . . , s) is
exactly represented as a Bézier curve P i(t) of degree ni, i.e.,

P (t) = P i(t) :=

ni∑
j=0

pij B
ni
j

(
t− ti−1

∆ti−1

)
(t ∈ [ti−1, ti]). (1.25)

Find a Bézier curve of degree m (≥ maxi ni)

R(t) :=
m∑
j=0

rj B
m
j (t) (t ∈ [0, 1]) (1.26)

so that the following conditions are satisfied:

(i) L2-error

‖P −R‖L2 =

√∫ 1

0
‖P (t)−R(t)‖2 dt

is minimized in the space Πd
m;

CHAPTER 1. INTRODUCTION 21

(ii) P and R are Gk,l-continuous at the endpoints, i.e.,

R(i)(t) = P (i)(ϕ(t)) (t = 0; i = 0, 1, . . . , k),

R(j)(t) = P (j)(ϕ(t)) (t = 1; j = 0, 1, . . . , l),

}
(1.27)

where ϕ : [0, 1] → [0, 1] is a strictly increasing function with ϕ(0) = 0 and ϕ(1) = 1.
Additionally, we assume that −1 ≤ k, l ≤ 3, k ≤ n1, l ≤ ns and k + l < m− 1.

There are only four articles which are relevant to this problem (see [71, 72, 75, 115]).
However, papers [71, 115] deal with merging of only two Bézier curves. Furthermore, Lu [71]
simplifies the problem by setting ϕ′(0) = ϕ′(1) = 1, hence the loss of generality. In addition,
only the symmetric continuity cases are considered, i.e., k = l. Zhu and Wang [115] limit
themselves to the cases of k = l = 1 and k = l = 2. In [72], Lu solves the problem of
Gk,l-constrained merging of multiple adjacent Bézier curves. However, the assumption that
k = l = 1 is made. As a result, the method has a very limited applicability in CAGD. Lu’s
approach [72] is generalized in [75], where one can find a method working for k = l = 2.
Regardless of how many curves are merged, the strategy is to solve a system of normal
equations. In Chapter 7, we generalize the approach given in Chapter 6 and deal efficiently
with Problem 1.11 in its most general form. The material is the author’s independent work
and it has not been published before.

In Chapter 8, which is based on the author’s joint work with Woźny [45], we propose a
novel approach to the problem of Ck,l-constrained merging of planar Bézier curves. As in the
case of degree reduction, we notice that resulting control points can be located far away from
the plot of the curve. This time, the defect seems to be even more significant. Once again,
we impose the box constraints which appear for the first time in the context of the merging
problem. As a result, the merged curve is more useful in practical applications.

1.7 Outline of the thesis

To begin with, we relate the parametric and geometric continuity conditions with the control
points of curves P and R (see Chapter 2). This is the first step to solve the problems of degree
reduction and merging. In Chapter 3, we introduce the general concept of dual bases and
show how to construct and modify them efficiently. Those methods are useful in solving the
problem of degree reduction of Bézier curves with box constrains (see Chapter 5). Moreover,
we focus on some of the properties of dual Bernstein polynomials, which we use to solve the
conventional problems of degree reduction and merging (see Chapters 4, 6 and 7).

In Chapter 4, we generalize the approach of Woźny and Lewanowicz [103] in order to deal
efficiently with Problem 1.9 in its most general form. Additionally, the simplified version of
Problem 1.9, namely the degree reduction with hybrid constraints (see §2.3), is also solved.
Next, a new approach to the problem of Ck,l-constrained degree reduction of planar Bézier
curves is proposed (see Chapter 5). We impose the box constraints and explain the purpose of
those restrictions. The new degree reduction problem requires completely different methods
than the conventional ones. We present two of them, and show that the best option is to use
the so-called BVLS algorithm combined with fast methods of construction and modification
of dual bases.

Chapter 6 brings a complete solution of Problem 1.10. Using fast connections between
Bernstein and dual Bernstein polynomials, we obtain efficient merging method having the

CHAPTER 1. INTRODUCTION 22

lowest computational complexity among all existing methods. In Chapter 7, we apply an
extended version of this method as an essential part of the algorithms of solving Problem 1.11
with and without the simplifying assumptions (see §2.3). In Chapter 8, the problem of merging
of planar Bézier curves with box constraints is formulated and solved. As in the case of the
box-constrained degree reduction, this new idea is justified by some illustrative examples.

Chapter 2

Continuity constraints

As it was stated in the previous chapter, a single Bézier curve is not flexible enough to fit
more complex shapes. To handle this issue properly, one should use a composite Bézier
curve which consists of many Bézier curves joined end-to-end. However, one must guarantee
smoothness at the places where the pieces connect. A composite Bézier curve is smooth if
its derivatives, up to some order, are properly defined. There are two main concepts, namely
parametric and geometric continuity. Parametric continuity implies continuous derivatives.
It guarantees smoothness of a curve and of its parametrization. For instance, C1 continuity
means that, in addition to C0 continuity, both tangent vectors must have the same direction
and magnitude. Geometric continuity is defined as agreement of derivatives after a suitable
reparametrization. In other words, it involves certain relaxation of the parametrization. Nev-
ertheless, the connection stays smooth. For instance, G1 continuity means that, in addition
to G0 continuity, both tangent vectors point in the same direction, however, their magnitudes
may be different. According to Farin [33, §11.1], “The concept of geometric continuity is
more appropriate when dealing with shape; parametric continuity is appropriate when speed
of traversal is an issue.” Therefore, in many cases, parametric continuity seems unnecessary
and too restrictive. Geometric continuity, on the other hand, might be a better option. For
a detailed explanation, see the pioneering works by Barsky and DeRose [6, 27].

When dealing with a composite Bézier curve, even a minor modification of a single segment
may affect the continuity. For that reason, operations such as degree reduction and merging
are performed under certain continuity conditions (see Problems 1.8–1.11). In this chapter,
a primary objective is to relate the continuity constraints with the control points.

2.1 Parametric continuity constraints

First, we recall the parametric continuity constraints associated with Ck,l-constrained degree
reduction of Bézier curves (see Problem 1.8),

R(i)(0) = P (i)(0) (i = 0, 1, . . . , k),

R(j)(1) = P (j)(1) (j = 0, 1, . . . , l).

}
(2.1)

23

CHAPTER 2. CONTINUITY CONSTRAINTS 24

Now, using the formulas (1.8) and the explicit definition of the forward difference operator
(see (1.7), cf. (1.6)), we get

R(i)(0) =
m!

(m− i)!
∆ir0 =

m!

(m− i)!

i∑
h=0

(−1)i+h
(
i

h

)
rh,

R(j)(1) =
m!

(m− j)!
∆jrm−j =

m!

(m− j)!

j∑
h=0

(−1)j+h
(
j

h

)
rm−j+h.

(2.2)

Next, we substitute the formulas (1.8) and (2.2) into the equations (2.1). Finally, some simple
manipulations lead to the following well-known formulas for the control points r0, r1, . . . , rk
and rm, rm−1, . . . , rm−l (see, e.g., [103, §4]):

rj =

(
n

j

)(
m

j

)−1

∆jp0 −
j−1∑
h=0

(−1)j+h
(
j

h

)
rh (j = 0, 1, . . . , k), (2.3)

rm−j = (−1)j
(
n

j

)(
m

j

)−1

∆jpn−j −
j∑

h=1

(−1)h
(
j

h

)
rm−j+h (j = 0, 1, . . . , l), (2.4)

respectively.
Now, let us consider the problem of Ck,l-constrained merging of Bézier curves (see Prob-

lem 1.10). Here the Ck,l conditions have the following interpretation: R and P 1 are Ck-
continuous at t = 0, while R and P s are C l-continuous at t = 1. Notice that only the
first and the last segments of the original composite Bézier curve are considered, hence the
additional assumptions that k ≤ n1 and l ≤ ns. Proceeding analogously as before, we obtain

rj = t−j1

(
n1

j

)(
m

j

)−1

∆jp1
0 −

j−1∑
h=0

(−1)j+h
(
j

h

)
rh (j = 0, 1, . . . , k), (2.5)

rm−j = (ts−1 − 1)−j
(
ns
j

)(
m

j

)−1

∆jpsns−j −
j∑

h=1

(−1)h
(
j

h

)
rm−j+h (j = 0, 1, . . . , l) (2.6)

(cf. (2.3) and (2.4)).

Remark 2.1. While deriving the formulas (2.5) and (2.6), the authors of [45, 102] forgot
that the parametrization of P 1 and P s is [0, t1] and [ts−1, 1], respectively. Instead, they used
[0, 1] for both curves. Consequently, the formulas given there are slightly different than (2.5),
(2.6); and resulting curves must be slightly different as well. Note that during the derivation
of (2.5) and (2.6), some researchers choose the interval [0, 1] for P 1 and P s (see, e.g., [71,
Remark 2.3]).

2.2 Geometric continuity constraints

In this subsection, we relate the geometric continuity constraints with the control points.
Limiting ourselves to the cases of −1 ≤ k, l ≤ 3, which are useful from a practical point of
view, we discuss the Gk,l conditions in detail.

CHAPTER 2. CONTINUITY CONSTRAINTS 25

First, we focus on the problem of Gk,l-constrained degree reduction of Bézier curves (see
Problem 1.9). Recall the geometric continuity constraints,

R(i)(t) = P (i)(ϕ(t)) (t = 0; i = 0, 1, . . . , k),

R(j)(t) = P (j)(ϕ(t)) (t = 1; j = 0, 1, . . . , l).

}
(2.7)

It can be easily shown that

di

dti
P (ϕ(t)) =

i∑
j=1

Uij
dj

duj
P (u)

∣∣∣
u=ϕ(t)

, (2.8)

where the coefficients Uij ≡ Uij(t) depend only on the derivatives δj ≡ δj(t) := ϕ(j)(t) for
j = 1, 2, . . . , i. For instance,

U11 = δ1;

U21 = δ2, U22 = δ2
1 ;

U31 = δ3, U32 = 3δ1δ2, U33 = δ3
1 ;

U41 = δ4, U42 = 3δ2
2 + 4δ1δ3, U43 = 6δ2

1δ2, U44 = δ4
1 .

Now, applying the formulas (1.8), (2.2) and (2.8) to the equations (2.7), we obtain the fol-
lowing recursive forms for the control points r0, r1, . . . , rk:

r0 = p0,

ri =
(−1)i

(−m)i

i∑
j=1

(−1)j(−n)jUij(0)∆jp0 −
i−1∑
h=0

(−1)i+h
(
i

h

)
rh (i = 1, 2, . . . , k), (2.9)

and similarly for rm, rm−1, . . . , rm−l:

rm = pn,

rm−i =
1

(−m)i

i∑
j=1

(−1)j(−n)jUij(1)∆jpn−j −
i∑

h=1

(−1)h
(
i

h

)
rm−i+h (i = 1, 2, . . . , l),

(2.10)

where shifted factorial is defined by

(c)0 := 1, (c)h := c(c+ 1) . . . (c+ h− 1) (h ≥ 1; c ∈ C).

Observe that the control points r1, r2, . . . , rk depend on the parameters

λi := δi(0) = ϕ(i)(0) (i = 1, 2, . . . , k),

while the points rm−1, rm−2, . . . , rm−l depend on

µj := δj(1) = ϕ(j)(1) (j = 1, 2, . . . , l).

Remark 2.2. Note that Gk,l ≡ Ck,l for −1 ≤ k, l < 1.

CHAPTER 2. CONTINUITY CONSTRAINTS 26

Remark 2.3. In contrast to the parametric case, the control points (2.9) and (2.10) are not
yet known since the parameters {λi} and {µj} are not given in advance. Note that the Ck,l

constraints imply that λ1 = µ1 := 1 and λi = µj := 0 (i, j > 1).

For k, l > 3, the constraints (2.7) are overly restrictive. Therefore, in practice, it is
sufficient to consider the cases of −1 ≤ k, l ≤ 3. When k = 3, we have:

r0 = p0, r1 = p0 +
n

m
λ1∆p0, (2.11)

r2 = p0 +
n

m

[
2λ1 +

1

m− 1
λ2

]
∆p0 +

(n− 1)2

(m− 1)2
λ2

1∆2p0, (2.12)

r3 = p0 +
n

m

[
3λ1 +

3

m− 1
λ2 +

1

(m− 2)2
λ3

]
∆p0

+ 3
(n− 1)2

(m− 1)2

[
λ2

1 +
1

m− 2
λ1λ2

]
∆2p0 +

(n− 2)3

(m− 2)3
λ3

1∆3p0. (2.13)

In the case of k = 2, we use (2.11) and (2.12). For k = 1, the formulas (2.11) hold. Analo-
gously, when l = 3, we have:

rm = pn, rm−1 = pn −
n

m
µ1∆pn−1, (2.14)

rm−2 = pn −
n

m

[
2µ1 −

1

m− 1
µ2

]
∆pn−1 +

(n− 1)2

(m− 1)2
µ2

1∆2pn−2, (2.15)

rm−3 = pn −
n

m

[
3µ1 −

3

m− 1
µ2 +

1

(m− 2)2
µ3

]
∆pn−1

+ 3
(n− 1)2

(m− 1)2

[
µ2

1 −
1

m− 2
µ1µ2

]
∆2pn−2 −

(n− 2)3

(m− 2)3
µ3

1∆3pn−3. (2.16)

In the case of l = 2, we use (2.14) and (2.15). For l = 1, the formulas (2.14) hold.
Now, let us look at the problem of Gk,l-constrained merging of Bézier curves (see Prob-

lem 1.11). Here the Gk,l conditions have the following interpretation: R and P 1 are Gk-
continuous at t = 0, while R and P s are Gl-continuous at t = 1. Once again, observe that
only the first and the last segments of the original composite Bézier curve are considered.
Similarly as before, we limit ourselves to the cases of −1 ≤ k, l ≤ 3. When k = 3, we have:

r0 = p1
0, r1 = p1

0 +
n1

m
t−1
1 λ1∆p1

0, (2.17)

r2 = p1
0 +

n1

m
t−1
1

[
2λ1 +

1

m− 1
λ2

]
∆p1

0 +
(n1 − 1)2

(m− 1)2
t−2
1 λ2

1∆2p1
0, (2.18)

r3 = p1
0 +

n1

m
t−1
1

[
3λ1 +

3

m− 1
λ2 +

1

(m− 2)2
λ3

]
∆p1

0

+ 3
(n1 − 1)2

(m− 1)2
t−2
1

[
λ2

1 +
1

m− 2
λ1λ2

]
∆2p1

0 +
(n1 − 2)3

(m− 2)3
t−3
1 λ3

1∆3p1
0, (2.19)

CHAPTER 2. CONTINUITY CONSTRAINTS 27

(cf. (2.11)–(2.13)). In the case of k = 2, we use (2.17) and (2.18). For k = 1, the formu-
las (2.17) hold. Analogously, when l = 3, we have:

rm = psns
, rm−1 = psns

− ns
m

(1− ts−1)−1µ1∆psns−1, (2.20)

rm−2 = psns
− ns
m

(1− ts−1)−1

[
2µ1 −

1

m− 1
µ2

]
∆psns−1 +

(ns − 1)2

(m− 1)2
(1− ts−1)−2µ2

1∆2psns−2,

(2.21)

rm−3 = psns
− ns
m

(1− ts−1)−1

[
3µ1 −

3

m− 1
µ2 +

1

(m− 2)2
µ3

]
∆psns−1

+ 3
(ns − 1)2

(m− 1)2
(1− ts−1)−2

[
µ2

1 −
1

m− 2
µ1µ2

]
∆2psns−2

− (ns − 2)3

(m− 2)3
(1− ts−1)−3µ3

1∆3psns−3, (2.22)

(cf. (2.14)–(2.16)). In the case of l = 2, we use (2.20) and (2.21). For l = 1, the formulas (2.20)
hold.

As in the case of Gk,l-constrained degree reduction, optimal values for the parameters
{λi} and {µj} are not known in advance.

2.3 Hybrid continuity constraints

Notice that the control points (2.12), (2.13), (2.15), (2.16), (2.18), (2.19), (2.21) and (2.22) are
nonlinear polynomial functions of the continuity parameters {λi} and {µj}. As we shall see in
Chapters 4 and 7, this is a serious issue which makes further computations more difficult and
expensive. However, if we set λ1 = µ1 := 1, which implies C1,1 continuity (see Remark 2.3),
then the previously mentioned functions become linear. This idea is widely used in degree
reduction (see, e.g., [92]) and merging (see, e.g., [71]).

In general, we use Cp,q/Gk,l notation to describe the so-called hybrid constraints, where
p, q ∈ {−, 1} and (k ≥ 2 or l ≥ 2). In the case of k ≥ 2 and p = 1, we set λ1 := 1. Similarly,
for l ≥ 2 and q = 1, we set µ1 := 1. Setting p = q := − means that we do not fix λ1, µ1,
respectively. Clearly, C−,−/Gk,l denotes Gk,l.

We denote the above-described approach to the problems of degree reduction and merging
of Bézier curves as Cp,q/Gk,l-constrained degree reduction of Bézier curves and Cp,q/Gk,l-
constrained merging of Bézier curves, respectively. For further details, see Chapters 4 and 7.

Chapter 3

Dual bases

Most of the algorithms given in this thesis are based on the properties of dual polynomial
bases. Therefore, in this chapter, we introduce the concept of dual bases (see §3.1). In §3.2,
we give some methods of construction of dual bases in general. Finally, we discuss in detail
the properties of dual Bernstein polynomials (see §3.3).

3.1 Introduction

Let Bn := {b0, b1, . . . , bn} be a basis of the linear space Bn := spanBn. A dual basis Dn :={
d

(n)
0 , d

(n)
1 , . . . , d

(n)
n

}
for the basis Bn of the space Bn satisfies the following duality conditions:

spanDn = Bn, (3.1)〈
bi, d

(n)
j

〉
= δij (i, j = 0, 1, . . . , n), (3.2)

where 〈·, ·〉 : Bn × Bn → C is an inner product, and d
(n)
j (j = 0, 1, . . . , n) are called dual

functions.
Now, we present some well-known facts about dual bases.

Fact 3.1 ([100]). Every fn ∈ Bn can be written in the following way:

fn =
n∑
i=0

〈
fn, d

(n)
i

〉
bi.

Proof. First, we write

fn =
n∑
i=0

aibi (ai ∈ C)

since every fn ∈ Bn has a unique representation in the basis Bn. Now, let us consider〈
fn, d

(n)
j

〉
=

n∑
i=0

ai

〈
bi, d

(n)
j

〉
(j = 0, 1, . . . , n).

Obviously, the duality conditions (3.2) imply that〈
fn, d

(n)
j

〉
= aj (j = 0, 1, . . . , n).

28

CHAPTER 3. DUAL BASES 29

Fact 3.2 ([100]). Given a function g,

f∗n =

n∑
i=0

〈
g, d

(n)
i

〉
bi (3.3)

is the best least squares approximation of g in the space Bn, i.e.,

‖g − f∗n‖2 = min
fn∈Bn

‖g − fn‖2,

where ‖ · ‖2 :=
√
〈·, ·〉 is the least squares norm.

Proof. According to Fact 3.1, f∗n has the following representation in the basis Bn of the space
Bn:

f∗n =

n∑
i=0

〈
f∗n, d

(n)
i

〉
bi.

On the other hand, a classical characterization of the best least squares approximation is that
〈g − f∗n, h〉 = 0 holds for any h ∈ Bn. In particular, for h = d

(n)
i (i = 0, 1, . . . , n), we obtain〈

g, d
(n)
i

〉
=
〈
f∗n, d

(n)
i

〉
(i = 0, 1, . . . , n).

Hence, the formula (3.3) follows.

Recently, dual bases with their applications in numerical analysis and CAGD have been
extensively studied. Dual Bernstein polynomials (see, e.g., [21, 52, 62, 63, 87, 88]) have found
their application in the algorithm of computing roots of polynomials (see [7]), degree reduction
of Bézier curves (see [44, 73, 103]), merging of Bézier curves (see [102]) and polynomial
approximation of rational Bézier curves (see [65, 66]). Bivariate dual Bernstein polynomials
can be used in degree reduction of triangular Bézier surfaces (see [104]) and approximation
of rational triangular Bézier surfaces by polynomial triangular Bézier surfaces (see [61]). In
order to perform degree reduction of tensor product Bézier surfaces, one can use the properties
of dual tensor product Bernstein polynomials (see [64]). In [101], one can find some results on
dual B-spline functions. Paper [48] deals with the construction of dual B-spline functionals.
Dual Wang-Bézier and dual Bézier-Said-Wang type generalized Ball polynomials have also
attracted a lot of attention lately (see [4, 106–108]). The theory and applications of dual
NS-power bases are given in [109]. Dual polynomial bases were studied in [41]. Dual basis
functions in subspaces of inner product spaces were discussed in [53]. As for the properties
of dual bases in general, see [46, 100, 101].

3.2 Construction of dual bases

In this subsection, we show how to construct a dual basis.

3.2.1 A straightforward method

To begin with, let us focus on the most obvious approach (see, e.g., [100, §2]). A goal is to
represent each dual function d

(n)
0 , d

(n)
1 , . . . , d

(n)
n in the basis Bn, i.e., we write

d
(n)
i =

n∑
j=0

a
(n)
ij bj (i = 0, 1, . . . , n)

CHAPTER 3. DUAL BASES 30

and look for the coefficients a(n)
ij (i, j = 0, 1, . . . , n). Such a representation exists since d(n)

i ∈
Bn (cf. (3.1)). Now, for each i ∈ {0, 1, . . . , n}, the duality conditions (3.2) yield the following
system of linear equations:

δik =
〈
d

(n)
i , bk

〉
=

n∑
j=0

a
(n)
ij 〈bj , bk〉 (k = 0, 1, . . . , n).

Finally, we solve each system for the coefficients a(n)
ij (j = 0, 1, . . . , n). Note that these systems

share the same Gramian matrix which must be inverted.

3.2.2 An orthonormal basis approach

Let q0, q1, . . . , qn be an orthonormal basis of the space Bn with respect to the inner product
〈·, ·〉, i.e., the following conditions are satisfied:

span {q0, q1, . . . , qn} = Bn,

〈qi, qj〉 = δij (i, j = 0, 1, . . . , n).

As it turns out, orthonormal and dual bases are related.

Theorem 3.3 ([62]). Suppose that we know a representation of each q0, q1, . . . , qn in the basis
b0, b1, . . . , bn,

qi =
n∑
j=0

hijbj (i = 0, 1, . . . , n). (3.4)

Then, the dual functions d(n)
0 , d

(n)
1 , . . . , d

(n)
n can be written in the following way:

d
(n)
j =

n∑
i=0

hijqi (j = 0, 1, . . . , n).

Unfortunately, the representation (3.4), as well as the orthonormal basis itself, is in many
cases unknown.

3.2.3 A more sophisticated method (Dn =⇒ Dn+1)

Now, we describe a more sophisticated method of construction of dual bases.
Suppose that Bn is the given basis of the space Bn and the dual basis Dn with respect

to the inner product 〈·, ·〉 is known as well. In [101], Woźny proposed an efficient method of
constructing the dual basis

Dn+1 :=
{
d

(n+1)
0 , d

(n+1)
1 , . . . , d

(n+1)
n+1

}
for Bn+1 := Bn ∪ {bn+1}. See also his previous method [100]. Note that the results which
were first published in [101] contain some mistakes because the author forgot to use a complex
conjugate of certain coefficients (see [46, Remark 2.3]). However, in the case of a real-valued
inner product, the formulas given there are true. The corrected results were published in [46].
Further on in this subsection, we present the connection between Dn and Dn+1 as well as the
algorithm of constructing Dn+1.

CHAPTER 3. DUAL BASES 31

Theorem 3.4 ([101]). The dual functions from Dn and Dn+1 are related in the following
way:

d
(n+1)
i = d

(n)
i − w

(n+1)
i d

(n+1)
n+1 (i = 0, 1, . . . , n), (3.5)

where
w

(n+1)
i :=

〈
d

(n)
i , bn+1

〉
. (3.6)

As a result of Theorem 3.4, each dual function d
(n+1)
i (i = 0, 1, . . . , n) depends on

d
(n)
i , which is known, and on d

(n+1)
n+1 which must be computed. Note that spanBn+1 =

span (Dn ∪ {bn+1}). Therefore, we can write

d
(n+1)
n+1 =

n∑
h=0

c
(n+1)
h d

(n)
h + c

(n+1)
n+1 bn+1, (3.7)

and solve the following system of linear equations:
0 =

〈
d

(n+1)
n+1 , bi

〉
= c

(n+1)
i + c

(n+1)
n+1 v

(n+1)
i (i = 0, 1, . . . , n),

1 =
〈
d

(n+1)
n+1 , bn+1

〉
=

n∑
h=0

c
(n+1)
h w

(n+1)
h + c

(n+1)
n+1 v

(n+1)
n+1 ,

where
v

(n+1)
j := 〈bn+1, bj〉 (j = 0, 1, . . . , n+ 1), (3.8)

for the coefficients c(n+1)
0 , c

(n+1)
1 , . . . , c

(n+1)
n+1 . According to [101, §2], the solution is simple,

namely

c
(n+1)
n+1 =

(
v

(n+1)
n+1 −

n∑
h=0

v
(n+1)
h w

(n+1)
h

)−1

, (3.9)

c
(n+1)
h = −v(n+1)

h c
(n+1)
n+1 (h = 0, 1, . . . , n). (3.10)

Corollary 3.5 ([101]). Let f∗n ∈ Bn be the best least squares approximation of a function g
in the space Bn, i.e.,

‖g − f∗n‖2 = min
fn∈Bn

‖g − fn‖2, (3.11)

where

f∗n =
n∑
i=0

e
(n)
i bi (3.12)

with e(n)
i :=

〈
g, d

(n)
i

〉
for i = 0, 1, . . . , n (see Fact 3.2). Suppose that we know the coefficients

e
(n)
i (i = 0, 1, . . . , n) and our goal is to compute the optimal element f∗n+1 ∈ Bn+1 for the

same function g. Observe that Fact 3.2, along with the formulas (3.5) and (3.7), yields the
following relations:

e
(n+1)
n+1 =

n∑
h=0

c
(n+1)
h e

(n)
h + c

(n+1)
n+1 〈g, bn+1〉 ,

e
(n+1)
i = e

(n)
i − w

(n+1)
i e

(n+1)
n+1 (i = 0, 1, . . . , n),

where z is the complex conjugate of z ∈ C.

CHAPTER 3. DUAL BASES 32

The above-described idea is summarized in the following algorithm.

Algorithm 3.6 ([101]). [Dn =⇒ Dn+1]

Input: Dn =
{
d

(n)
0 , d

(n)
1 , . . . , d

(n)
n

}
, Bn+1 = {b0, b1, . . . , bn+1}

Output: Dn+1 =
{
d

(n+1)
0 , d

(n+1)
1 , . . . , d

(n+1)
n+1

}
Step 1. Compute w(n+1)

i (i = 0, 1, . . . , n) by (3.6).

Step 2. Compute v(n+1)
j (j = 0, 1, . . . , n+ 1) by (3.8).

Step 3. Compute c(n+1)
n+1 by (3.9).

Step 4. Compute c(n+1)
h (h = 0, 1, . . . , n) by (3.10).

Step 5. Compute d(n+1)
n+1 by (3.7).

Step 6. Compute d(n+1)
i (i = 0, 1, . . . , n) by (3.5).

Step 7. Return the dual basis
{
d

(n+1)
0 , d

(n+1)
1 , . . . , d

(n+1)
n+1

}
.

The next algorithm computes a sequence of dual bases D0, D1, . . . , DN .

Algorithm 3.7 ([101]). [Construction of dual bases D0, D1, . . . , DN]

Input: Bn = {b0, b1, . . . , bn} (n = 0, 1, . . . , N)

Output: Dn =
{
d

(n)
0 , d

(n)
1 , . . . , d

(n)
n

}
(n = 0, 1, . . . , N)

Step 1. Set D0 :=
{
〈b0, b0〉−1 b0

}
.

Step 2. Compute Dn (n = 1, 2, . . . , N) using Algorithm 3.6.

Step 3. Return the dual bases D0, D1, . . . , DN .

3.2.4 A new method (Dn+1 =⇒ Dn)

In this subsection, we prove that for the given dual basis Dn+1, it is possible to compute
efficiently the dual basis Dn. Such a method is a result of the author’s joint work with Woźny
(see [46]).

Let there be given the dual basis Dn+1. Clearly, to compute the dual basis Dn one can
try to rewrite the formula (3.5). However, note that each coefficient w(n+1)

i depends on the

searched dual function d
(n)
i (see (3.6)). To avoid this issue, we must find a different formula

for the coefficients w(n+1)
i (i = 0, 1, . . . , n). In order to prove the main result, we will need

the following lemma.

Lemma 3.8. The following identity holds:〈
d

(n)
i , d

(n+1)
n+1

〉
= 0 (i = 0, 1, . . . , n). (3.13)

CHAPTER 3. DUAL BASES 33

Proof. We use Fact 3.1 to represent each dual function d
(n)
i as a linear combination of the

elements b0, b1, . . . , bn,

d
(n)
i =

n∑
j=0

〈
d

(n)
i , d

(n)
j

〉
bj .

Consequently, we have〈
d

(n)
i , d

(n+1)
n+1

〉
=

〈
n∑
j=0

〈
d

(n)
i , d

(n)
j

〉
bj , d

(n+1)
n+1

〉

=

n∑
j=0

〈
d

(n)
i , d

(n)
j

〉〈
bj , d

(n+1)
n+1

〉
= 0

since
〈
bj , d

(n+1)
n+1

〉
= 0 for j = 0, 1, . . . , n.

Theorem 3.9. The connection between the dual functions from Dn and Dn+1 is as follows:

d
(n)
i = d

(n+1)
i + w

(n+1)
i d

(n+1)
n+1 (i = 0, 1, . . . , n), (3.14)

where

w
(n+1)
i := −

〈
d

(n+1)
i , d

(n+1)
n+1

〉
〈
d

(n+1)
n+1 , d

(n+1)
n+1

〉 (3.15)

(cf. Theorem 3.4).

Proof. Obviously, the relation (3.14) follows from (3.5). Now, we substitute (3.14) into the
equation (3.13) and obtain

0 =
〈
d

(n+1)
i + w

(n+1)
i d

(n+1)
n+1 , d

(n+1)
n+1

〉
=
〈
d

(n+1)
i , d

(n+1)
n+1

〉
+ w

(n+1)
i

〈
d

(n+1)
n+1 , d

(n+1)
n+1

〉
.

Hence, the formula (3.15) follows.

Corollary 3.10. Let f∗n+1 ∈ Bn+1 be the best least squares approximation of a function g in
the space Bn+1, i.e.,

‖g − f∗n+1‖2 = min
fn+1∈Bn+1

‖g − fn+1‖2,

where

f∗n+1 =
n+1∑
j=0

e
(n+1)
j bj

with e
(n+1)
j :=

〈
g, d

(n+1)
j

〉
for j = 0, 1, . . . , n + 1 (see Fact 3.2). Suppose that we know

the coefficients e(n+1)
j (j = 0, 1, . . . , n + 1) and our goal is to compute the optimal element

f∗n ∈ Bn for the same function g (see (3.11), (3.12)). Observe that Fact 3.2, along with the
formula (3.14), yields the following relation:

e
(n)
i = e

(n+1)
i + w

(n+1)
i e

(n+1)
n+1 (i = 0, 1, . . . , n)

(cf. Corollary 3.5).

CHAPTER 3. DUAL BASES 34

Note that in contrast to (3.6), the formula (3.15) is independent of d(n)
i (i = 0, 1, . . . , n).

Therefore, it can be used to compute the dual basis Dn, under the assumption that the dual
basis Dn+1 is given. See the following algorithm.

Algorithm 3.11. [Dn+1 =⇒ Dn]

Input: Dn+1 =
{
d

(n+1)
0 , d

(n+1)
1 , . . . , d

(n+1)
n+1

}
Output: Dn =

{
d

(n)
0 , d

(n)
1 , . . . , d

(n)
n

}
Step 1. For i = 0, 1, . . . , n,

(i) compute w(n+1)
i by (3.15);

(ii) compute d(n)
i by (3.14).

Step 2. Return the dual basis
{
d

(n)
0 , d

(n)
1 , . . . , d

(n)
n

}
.

Remark 3.12. Suppose that a dual basis of a certain space is well-known or was computed
earlier. In numerical analysis and CAGD, we often look for an optimal element (in the least
squares sense) which is constrained, e.g., by some continuity conditions. As a result, we need
a dual basis of a specific subspace of the well-known space. Algorithm 3.11 can be particularly
useful in those situations. For example, see Chapter 5.

As we shall see in Chapter 5, the presented algorithms are useful in CAGD.

3.3 Dual Bernstein polynomials

In this subsection, we focus on dual Bernstein polynomials, which are crucial for most of the
algorithms presented in this thesis.

First, we define the inner product 〈·, ·〉αβ by

〈f, g〉αβ :=

∫ 1

0
(1− t)αtβf(t)g(t)dt (α, β > −1). (3.16)

Further on in the thesis, we assume that 〈·, ·〉L ≡ 〈·, ·〉00.
According to [52, §2], there is a unique dual Bernstein polynomial basis of degree n

Dn
0 (t;α, β), Dn

1 (t;α, β), . . . , Dn
n(t;α, β) ∈ Πn,

associated with the Bernstein basis (1.1), so that〈
Dn
i (·;α, β), Bn

j

〉
αβ

= δij (i, j = 0, 1, . . . , n).

For the sake of simplicity, we set Dn
i (t) := Dn

i (t; 0, 0).
Now, we consider the following restriction of the Πn space (cf. §1.3, pt. 7). Given the

integers k, l such that k, l ≥ −1 and k + l < n− 1, let Π
(k,l)
n be the space of all polynomials

of degree at most n, whose derivatives of orders 0, 1, . . . , k at t = 0, as well as derivatives of
orders 0, 1, . . . , l at t = 1, vanish,

Π(k,l)
n :=

{
P ∈ Πn : P (i)(0) = 0 (0 ≤ i ≤ k) and P (j)(1) = 0 (0 ≤ j ≤ l)

}
. (3.17)

CHAPTER 3. DUAL BASES 35

Here we use the convention that derivative of order 0 of a function is the function itself.
Clearly, dim Π

(k,l)
n = n − k − l − 1, and the Bernstein polynomials Bn

k+1, B
n
k+2, . . . , B

n
n−l−1

form a basis of this space. According to [52, §3], there is a unique constrained dual Bernstein
polynomial basis of degree n

D
(n,k,l)
k+1 (t;α, β), D

(n,k,l)
k+2 (t;α, β), . . . , D

(n,k,l)
n−l−1(t;α, β) ∈ Π(k,l)

n

satisfying the relation
〈
D

(n,k,l)
i (·;α, β), Bn

j

〉
αβ

= δij (i, j = k+1, k+2, . . . , n−l−1). Obviously,

we have D(n,−1,−1)
i (t;α, β) = Dn

i (t;α, β), which corresponds to the unconstrained case. For

simplicity, we set D(n,k,l)
i (t) := D

(n,k,l)
i (t; 0, 0).

Further on in this subsection, we give some useful properties of the constrained and
unconstrained dual Bernstein bases.

3.3.1 Connections between Bernstein and dual Bernstein bases

Now, we present some useful connections between Bernstein and dual Bernstein bases. In
the context of Problems 1.10 and 1.11, the following lemmas are of great importance (see
Chapters 6 and 7).

Lemma 3.13. Let n and m be positive integers such that n ≤ m. The following formula
holds:

Bn
i (t) =

m∑
j=0

a
(n,m)
ij Dm

j (t) (0 ≤ i ≤ n; n ≤ m),

where

a
(n,m)
ij :=

1

m+ n+ 1

(
n

i

)(
m

j

)(
n+m

i+ j

)−1

. (3.18)

Proof. Since Πn ⊂ Πm, we make use of Fact 3.1 and obtain

a
(n,m)
ij = 〈Bn

i , B
m
j 〉L =

∫ 1

0
Bn
i (t)Bm

j (t) dt.

The result follows by the well-known properties of Bernstein polynomials (see §1.3, pts. 5 and
12).

Lemma 3.14 ([63]). The constrained dual Bernstein polynomials have the following repre-
sentation in the Bernstein basis:

D
(m,k,l)
i (t) =

m−l−1∑
j=k+1

cij(m, k, l)B
m
j (t),

where the coefficients cij ≡ cij(m, k, l) satisfy the recurrence relation

ci+1,j =
1

U(i)
{2(i− j)(i+ j −m) cij +W (j) ci,j−1 + U(j) ci,j+1 −W (i) ci−1,j}

(k + 1 ≤ i ≤ m− l − 2, k + 1 ≤ j ≤ m− l − 1)
(3.19)

CHAPTER 3. DUAL BASES 36

with
U(u) := (u−m)(u− k)(u+ k + 2)/(u+ 1),

W (u) := u(u−m− l − 2)(u−m+ l)/(u−m− 1).

We adopt the convention that cij := 0 if i ≤ k, or i ≥ m − l, or j ≤ k, or j ≥ m − l. The
starting values are

ck+1,j = (−1)j−k−1(2k + 3)

(
m

k + 1

)−1(m+ k − l + 1

2k + 3

)(
m

j

)−1

×
(
m− k − l − 2

j − k − 1

)(
m+ k + l + 3

k + j + 2

)
,

where j = k + 1, k + 2, . . . ,m− l − 1.

According to Lemma 3.14, the coefficients cij can be put in the following table:

0 0 . . . 0
0 ck+1,k+1 ck+1,k+2 . . . ck+1,m−l−1 0
0 ck+2,k+1 ck+2,k+2 . . . ck+2,m−l−1 0
. .
0 cm−l−1,k+1 cm−l−1,k+2 . . . cm−l−1,m−l−1 0

0 0 . . . 0

Table 1: The c-table

which can be completed easily using Algorithm 3.15.

Algorithm 3.15 ([63]). [Computing the coefficients cij(m, k, l)]
Input: m, k, l
Output: table of the quantities cij ≡ cij(m, k, l) (i, j = k + 1, k + 2, . . . ,m− l − 1)

Step 1. Compute recursively ck+1,k+1, ck+1,k+2, . . . , ck+1,m−l−1 by the formulas

ck+1,m−l−1 :=

(
m

k + 1

)−1(m

l + 1

)−1(−1)m−k−l−2(m− k − l − 1)2k+2l+4

(2k + 2)!(2l + 2)!
,

ck+1,j :=
(j −m)(j − k)(j + k + 3)

(j + 1)(j −m+ l + 1)(j −m− l − 1)
ck+1,j+1

(j = m− l − 2, . . . , k + 2, k + 1).

Step 2. For i = k+ 1, k+ 2, . . . ,m− l− 2 and j = k+ 1, k+ 2, . . . ,m− l− 1, compute ci+1,j

using the recurrence (3.19).

Observe that the complexity of Algorithm 3.15 is O(m2).

3.3.2 Computing the inner products
〈
Bn
j , D

(m,k,l)
i (·;α, β)

〉
αβ

Now, we recall an efficient method of computing the inner products φij :=
〈
Bn
j , D

(m,k,l)
i (·;α,

β)〉αβ (i = k + 1, k + 2, . . . ,m − l − 1; j = 0, 1, . . . , n). As we shall see in Chapter 4,
Algorithm 3.16 plays a significant role in solving Problem 1.9.

CHAPTER 3. DUAL BASES 37

According to [64, 103], we have

φij :=

(
m− k − l − 2

i− k − 1

)(
m

i

)−1(n
j

)
(α+ l + 2)n−j(β + k + 2)j

(α+ l + 2)l+1(β + k + 2)k+1
ψij (3.20)

(i = k + 1, k + 2, . . . ,m− l − 1; j = 0, 1, . . . , n),

where the quantities ψij can be written in terms of the so-called dual discrete Bernstein
polynomials. For details, see [103]. From [64], we know that the quantities ψij can be put
in a rectangular table (see Table 2) and the entries of this ψ-table can be computed using
Algorithm 3.16 (cf. [103]).

ψk+1,0 ψk+1,1 . . . ψk+1,n

ψk+2,0 ψk+2,1 . . . ψk+2,n

. .
ψm−l−1,0 ψm−l−1,1 . . . ψm−l−1,n

Table 2: The ψ-table

Algorithm 3.16 ([64]). [Computing the coefficients ψij]
Input: n, m, k, l, α, β
Assumptions: n > m > 0; k, l ≥ −1; k + l < m− 1; α, β > −1

Output: table of the quantities ψij (i = k + 1, k + 2, . . . ,m− l − 1; j = 0, 1, . . . , n)

Let c := k + l + 2, and a := α+ β.

Step 1. Compute the boundary values ψk+1,0, ψk+1,1, . . . , ψk+1,n by the formula

ψk+1,j =
(c− n+ 1)m−c

(m− c)!(m+ a+ c+ 2)n−c

m−c∑
i=0

(c−m)i(m+ a+ c+ 2)i(j + l − n+ 1)i
i!(α+ 2l + 3)i(c− n+ 1)i

.

Step 2. For j = 0, n, compute recursively the auxiliary quantities q0(j), q1(j), . . . , qm−c(j) by

qi+1(j) = F (i)qi(j) +G(i)qi−1(j) (i = 0, 1, . . . ,m− c− 1; q0(j) = 1, q−1(j) = 0),

where

F (i) := 1− (n− l − j − 1)(m+ i+ a+ c+ 2)

(n−m+ i)(α+ 2l + i+ 3)
+

i(n+ i+ a+ c+ 1)

(n−m+ i)(α+ 2l + i+ 3)
,

G(i) :=
i(n+ i+ a+ c+ 1)(m− i− j − l)
(n−m+ i− 1)2(α+ 2l + i+ 3)

.

Step 3. Compute the boundary values ψk+2,0, ψk+3,0, . . . , ψm−l−1,0 (the first column),
and ψk+2,n, ψk+3,n, . . . , ψm−l−1,n (the last column) by the formula

ψij =
(c− n+ 1)m−c(k − l − α−m)i−k−1

(β + 2k + 3)i−k−1(m− c)!(m+ a+ c+ 2)n−c

×
i−k−1∑
p=0

(k − i+ 1)p(−m− n− a− 1)p
(k − l − α−m)p(c− n+ 1)p

qm−c−p(j).

CHAPTER 3. DUAL BASES 38

Step 4. For i = k + 1, k + 2, . . . ,m− l − 2, and j = 1, 2, . . . , n− 1, compute ψi+1,j by

ψi+1,j =
A(n, j)ψi,j−1 + [D(m, i)−D(n, j)]ψij + C(n, j)ψi,j+1 −A(m, i)ψi−1,j

C(m, i)

with A(r, s) := (k − s+ 1)(r + l − s+ α+ 2), C(r, s) := (s+ l − r + 1)(k + s+ β + 2),
and D(r, s) := A(r, s) + C(r, s).

Note that the complexity of Algorithm 3.16 is O(mn).
Further properties of dual Bernstein polynomials can be found, e.g., in [21, 62, 103].

Chapter 4

Gk,l-constrained degree reduction of
Bézier curves

In [103], Woźny and Lewanowicz solved the problem of Ck,l-constrained degree reduction
of Bézier curves (see Problem 1.8), using the properties of dual Bernstein polynomials (see
§3.3). Assuming that the input and output curves are of degree n and m, respectively, their
method has the least complexity, O(mn), among the existing algorithms. Furthermore, they
avoided matrix inversion and explicit basis transformation. Some other methods of dealing
with Problem 1.8 are summarized in §1.6.1. In this chapter, we apply an extended version of
the method from [103] as an essential part of the algorithms of solving Problem 1.9. A goal
is to keep the positive features of the older method. In the thesis, we give a more detailed
version of the results published in [44].

The outline of the chapter is as follows. In §4.1, we formulate and solve a certain model
problem of constrained degree reduction of Bézier curves. §4.2 brings complete solutions of
Problem 1.9 with and without the simplifying assumptions, i.e., the Gk,l-constrained and
Cp,q/Gk,l-constrained degree reduction of Bézier curves, respectively (see §1.6.1, §2.2 and
§2.3). In order to get explicit formulas for the continuity parameters {λi} and {µj}, we focus
on selected cases of Problem 1.9 (see §4.3). §4.4 deals with the algorithmic implementation
of the proposed methods. Some illustrative examples are given in §4.5.

4.1 Degree reduction of Bézier curves with prescribed bound-
ary control points

Recall that, in §2.2, we have related the Gk,l continuity conditions (1.20) with the con-
trol points of the curves (1.17) and (1.18). As a result, the control points r0, r1, . . . , rk
and rm, rm−1, . . . , rm−l depend on the unknown parameters λi (i = 1, 2, . . . , k) and µj (j =
1, 2, . . . , l), respectively. Since the constraints (1.20), for k, l > 3, are known to be overly re-
strictive, we have limited ourselves to the cases of −1 ≤ k, l ≤ 3. The continuity parameters
{λi}, {µj} and the remaining control points rk+1, rk+2, . . . , rm−l−1 are to be determined so
that the weighted L2-distance (1.19) is minimized.

To begin with, it is convenient to discuss the following model problem of constrained
degree reduction of Bézier curves (cf. Problem 1.9).

39

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 40

Problem 4.1. [Degree reduction of Bézier curves with prescribed boundary control points]
Given a Bézier curve P ∈ Πd

n,

P (t) :=
n∑
i=0

piB
n
i (t),

we look for a Bézier curve R ∈ Πd
m (m < n),

R(t) :=
m∑
i=0

riB
m
i (t), (4.1)

having the prescribed control points r0, r1, . . . , rk and rm, rm−1, . . . , rm−l, that gives minimum
value of the weighted L2-error

E
(α,β)
2 := ‖P −R‖(α,β)

L2
=

√∫ 1

0
(1− t)αtβ‖P (t)−R(t)‖2 dt (α, β > −1). (4.2)

Given the points pi := (pi1, pi2, . . . , pid) ∈ Rd (i = 0, 1, . . . , n) and ri := (ri1, ri2, . . . , rid) ∈
Rd (i = 0, 1, . . . ,m), we use notation ph, rh for the vectors of hth coordinates of the points
p0, p1, . . . , pn and r0, r1, . . . , rm, respectively,

ph := [p0h, p1h, . . . , pnh], rh := [r0h, r1h, . . . , rmh] (h = 1, 2, . . . , d).

As an extension of the result given in [103] (see also [64]), we obtain the following theorem.

Theorem 4.2. The inner control points ri = (ri1, ri2, . . . , rid) (k + 1 ≤ i ≤ m− l − 1) of the
curve (4.1), being the solution of Problem 4.1, are given by

ri =
n∑
j=0

υjφij (i = k + 1, k + 2, . . . ,m− l − 1), (4.3)

where
φij =

〈
Bn
j , D

(m,k,l)
i (·;α, β)

〉
αβ

(see (3.16) and §3.3.2),

υj :=pj −
(
n

j

)−1
(

k∑
h=0

+
m∑

h=m−l

)(
n−m
j − h

)(
m

h

)
rh (j = 0, 1, . . . , n). (4.4)

The weighted L2-error (4.2) is given by

E
(α,β)
2 =

√√√√ d∑
h=1

[Inn(ph,ph) + Imm(rh, rh)− 2Inm(ph, rh)], (4.5)

where for a := [a0, a1, . . . , aN] and b := [b0, b1, . . . , bM], we define

INM (a,b) :=
B(α+ 1, β + 1)

(α+ β + 2)N+M

N∑
i=0

M∑
j=0

(
N

i

)(
M

j

)
(α+ 1)N+M−i−j(β + 1)i+jaibj ,

where B(α, β) := Γ(α)Γ(β)
Γ(α+β) is called beta function.

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 41

Proof. To begin with, we write
R(t) = S(t) + T (t),

where

S(t) :=
m−l−1∑
i=k+1

riB
m
i (t), T (t) :=

(
k∑
i=0

+
m∑

i=m−l

)
riB

m
i (t).

Using the degree elevation formula (see, e.g., [33, §6.10]; we adopt the usual convention that(
u
v

)
= 0 if v < 0 or v > u)

Bm
i (t) =

(
m

i

) n∑
h=0

(
n−m
h− i

)(
n

h

)−1

Bn
h (t),

we obtain

T (t) =
n∑
j=0

djB
n
j (t),

where

dj :=

(
n

j

)−1
(

k∑
h=0

+
m∑

h=m−l

)(
n−m
j − h

)(
m

h

)
rh.

Now, we observe that

‖P −R‖(α,β)
L2

= ‖W − S‖(α,β)
L2

=

√√√√ d∑
h=1

∫ 1

0
(1− t)αtβ [W h(t)− Sh(t)]

2 dt,

where

W (t) :=
[
W 1(t),W 2(t), . . . ,W d(t)

]
= P (t)− T (t) =

n∑
i=0

υiB
n
i (t),

S(t) :=
[
S1(t), S2(t), . . . , Sd(t)

]
with

υi := pi − di.

Thus, we are looking for the best weighted least squares approximation forW h (h = 1, 2, . . . , d)

in the space Π
(k,l)
m (see (3.17)). Remembering that Bm

i and D
(m,k,l)
i (·;α, β) (k + 1 ≤ i ≤

m− l − 1) are the dual bases in the space Π
(k,l)
m , we use Fact 3.2 and obtain

ri =

n∑
j=0

υj

〈
Bn
j , D

(m,k,l)
i (·;α, β)

〉
αβ

=
n∑
j=0

υjφij (i = k + 1, k + 2, . . . ,m− l − 1),

which is the formula (4.3).
It can be easily checked that for

P (t) :=
[
P 1(t), P 2(t), . . . , P d(t)

]
, R(t) :=

[
R1(t), R2(t), . . . , Rd(t)

]
,

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 42

we have

Inn(ph,ph) =
(
‖P h‖(α,β)

L2

)2
, Imm(rh, rh) =

(
‖Rh‖(α,β)

L2

)2
,

Inm(ph, rh) =
〈
P h, Rh

〉
αβ
.

Hence, the formula (4.5) follows.

4.2 Computing the continuity parameters

Coming back to the problem of Gk,l-constrained degree reduction of Bézier curves (see Prob-
lem 1.9), we notice that the formulas (2.11)–(2.16) with fixed parameters {λi} and {µj} (cf.
§2.2) constitute constraints of the form demanded in Problem 4.1. As a result, the control
points (4.3) depend on these parameters.

Now, optimum values of the parameters can be obtained by minimizing the squared er-
ror (4.5),

E(α,β) ≡ E(α,β)(λ1, λ2, . . . , λk, µ1, µ2, . . . , µl) :=
(
E

(α,β)
2

)2
, (4.6)

depending on {λi} and {µj} via formulas (2.11)–(2.16) and (4.3). For a minimum of the
function (4.6), it is necessary that its derivatives with respect to the parameters are zero,
which yields the system

∂

∂λu
E(α,β) =

d∑
h=1

[
∂

∂λu
Imm(rh, rh)− 2

∂

∂λu
Inm(ph, rh)

]
= 0 (u = 1, 2, . . . , k),

∂

∂µv
E(α,β) =

d∑
h=1

[
∂

∂µv
Imm(rh, rh)− 2

∂

∂µv
Inm(ph, rh)

]
= 0 (v = 1, 2, . . . , l).

(4.7)

Using the notation

H :=
B(α+ 1, β + 1)

(α+ β + 2)m
, (4.8)

Ftj(q) :=
1

(α+ β +m+ 2)t

(
m

j

) t∑
i=0

(
t

i

)
(α+ 1)t+m−i−j(β + 1)i+jqi, (4.9)

where q = [q0, q1, . . . , qt], we obtain

∂

∂λu
Inm(ph, rh) = H

m−l−1∑
j=u

Fnj(p
h)
∂rjh
∂λu

,

∂

∂µv
Inm(ph, rh) = H

m−v∑
j=k+1

Fnj(p
h)
∂rjh
∂µv

,

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 43

and

∂

∂λu
Imm(rh, rh) =

H

(α+ β +m+ 2)m

m∑
i=0

m∑
j=0

(
m

i

)(
m

j

)
(α+ 1)2m−i−j(β + 1)i+j

×
[
∂rih
∂λu

rjh + rih
∂rjh
∂λu

]
= 2H

m−l−1∑
j=u

Fmj(r
h)
∂rjh
∂λu

,

∂

∂µv
Imm(rh, rh) = 2H

m−v∑
j=k+1

Fmj(r
h)
∂rjh
∂µv

.

Hence, the system (4.7) takes the form

d∑
h=1

m−l−1∑
j=u

[
Fmj(r

h)− Fnj(ph)
] ∂rjh
∂λu

= 0 (u = 1, 2, . . . , k),

d∑
h=1

m−v∑
j=k+1

[
Fmj(r

h)− Fnj(ph)
] ∂rjh
∂µv

= 0 (v = 1, 2, . . . , l).

(4.10)

In the case of k = l = 3, we compute the partial derivatives of hth coordinates of the control
points (2.11)–(2.16). We obtain the following formulas:

∂rih
∂λ1

=

n
m

∆p0h (i = 1),

2 n
m

∆p0h + 2λ1
(n−1)2
(m−1)2

∆2p0h (i = 2),

3 n
m

∆p0h +
[
2λ1 + 1

m−2
λ2

]
3 (n−1)2
(m−1)2

∆2p0h + 3λ2
1

(n−2)3
(m−2)3

∆3p0h (i = 3),

0 (i = 0; m− 3 ≤ i ≤ m),

(4.11)

∂rih
∂λ2

=

n

(m−1)2
∆p0h (i = 2),

3 n
(m−1)2

∆p0h + 3λ1
(n−1)2
(m−2)3

∆2p0h (i = 3),

0 (i = 0, 1; m− 3 ≤ i ≤ m),

(4.12)

∂rih
∂λ3

=

{ n
(m−2)3

∆p0h (i = 3),

0 (i = 0, 1, 2; m− 3 ≤ i ≤ m),
(4.13)

∂rih
∂µ1

=

− n
m

∆pn−1,h (i = m− 1),

−2 n
m

∆pn−1,h + 2µ1
(n−1)2
(m−1)2

∆2pn−2,h (i = m− 2),

−3 n
m

∆pn−1,h +
[
2µ1 − 1

m−2
µ2

]
3 (n−1)2
(m−1)2

∆2pn−2,h − 3µ2
1

(n−2)3
(m−2)3

∆3pn−3,h (i = m− 3),

0 (0 ≤ i ≤ 3; i = m),

(4.14)

∂rih
∂µ2

=

n

(m−1)2
∆pn−1,h (i = m− 2),

3 n
(m−1)2

∆pn−1,h − 3µ1
(n−1)2
(m−2)3

∆2pn−2,h (i = m− 3),

0 (0 ≤ i ≤ 3; i = m− 1,m),

(4.15)

∂rih
∂µ3

=

{ − n
(m−2)3

∆pn−1,h (i = m− 3),

0 (0 ≤ i ≤ 3; m− 2 ≤ i ≤ m).
(4.16)

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 44

Notice that the partial derivatives of hth coordinates of the control points (4.3) depend
on (4.11)–(4.16) in the following way:

∂rih
∂λu

= −
n∑
j=0

(
n

j

)−1 k∑
g=u

(
n−m
j − g

)(
m

g

)
φij

∂rgh
∂λu

, (4.17)

∂rih
∂µv

= −
n∑
j=0

(
n

j

)−1 m−v∑
g=m−l

(
n−m
j − g

)(
m

g

)
φij

∂rgh
∂µv

. (4.18)

One can easily see that when k, l ≤ 3, we compute ∂rih
∂λu

, ∂rih
∂µv

by (4.17), (4.18) if k < i <
m− l, and by (4.11)–(4.16) otherwise. Finally, we put the expressions (4.11)–(4.18) into the
equations of the system (4.10).

Remark 4.3. Observe that for k ≥ 2 or l ≥ 2, the system (4.10) is nonlinear, therefore,
quite difficult to solve. Moreover, from a practical point of view, we additionally require that
λ1, µ1 > 0, which results in the same directions of tangent vectors at the endpoints of the
curves (1.17) and (1.18). Thus, to guarantee that these conditions will be satisfied, it is not
enough just to solve the system (4.10).

Now, we discuss two possible ways of computing {λi} and {µj}.

4.2.1 Computing Gk,l parameters using quadratic and nonlinear program-
ming approach

It is easy to check that if (k = 1 and l ≤ k) or (l = 1 and k ≤ l), then the error (4.6) is
a quadratic function of the continuity parameters.

In the case of (k = 2 and l ≤ k) or (l = 2 and k ≤ l), the error (4.6) is a fourth-degree
polynomial function of the continuity parameters.

For (k = 3 and l ≤ k) or (l = 3 and k ≤ l), the error (4.6) is a sixth-degree polynomial
function of the continuity parameters.

To find optimum values of the parameters λ1, µ1 in the case of G1,1-constrained degree
reduction problem, assuming that α, β = 0, Lu and Wang [77] solved the quadratic program-
ming problem subject to the constraints

λ1 ≥ z0, µ1 ≥ z1, (4.19)

where z0 and z1 are positive lower bounds prescribed to small values (they set 10−4 for both
lower bounds in the examples section). Such an approach can be used in the cases which
result in a quadratic error function (4.6). One can solve the quadratic programming problem
using, e.g., an iterative active set method, which is implemented in many software libraries.
The active set mechanism used by standard quadratic solvers is described in [14, §6.5].

Analogously, one can observe that for k = 2, 3 or l = 2, 3, the problem of minimizing the
error (4.6) subject to the constraints (4.19) is a nonlinear programming problem. To solve it,
one can use, for instance, a sequential quadratic programming (SQP) method (see, e.g., [14,
§15.1]), which is also widely available.

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 45

4.2.2 Computing Cp,q/Gk,l parameters by solving a system of linear equa-
tions

In the G2,2-constrained case, Rababah and Mann [91] simplified the problem by considering
C1,1 continuity at the endpoints, i.e., they set λ1, µ1 := 1. Later, this approach was also used
by Lu [70]. In [92], the same idea was used to simplify the G3,3-constrained case and the
authors noted that such an approach leads to a system of linear equations.

Now, using the notation from §2.3, we generalize the above-described approach for any
k, l such that −1 ≤ k, l ≤ 3. If k ≥ 2, we set λ1 := 1, which implies C1 continuity at t = 0
and consequently, Gk,l constraints become C1,q/Gk,l constraints, where q ∈ {−, 1}. Similarly,
when l ≥ 2, we set µ1 := 1, which implies C1 continuity at t = 1 and consequently, Gk,l

constraints become Cp,1/Gk,l constraints, where p ∈ {−, 1}.
Note that in the cases of k = 2, 3 or l = 2, 3, the above-described method leads to the

linear system (4.10) and the error (4.6) is a quadratic function of the continuity parameters.
However, in the cases of k = 1 or l = 1, there is no guarantee that the solution satisfies λ1 > 0
or µ1 > 0, respectively. In the case of the solution with nonpositive values of the parameters,
we must solve the quadratic programming problem subject to the constraints with prescribed
positive lower bounds for the parameters (see (4.19)). Observe that this approach uses no
simplifying assumptions for k, l ≤ 1.

Remark 4.4. Taking into account that the mentioned linear systems are rather small, one
can get explicit formulas for the continuity parameters. For example, in the cases of G1,1,
C−,1/G1,2, C1,−/G2,1 and C1,1/G2,2, the linear system (4.10) has the following form:

a11x1 + a12x2 = b1,

a21x1 + a22x2 = b2,

}
(4.20)

where x1, x2 are the continuity parameters and the coefficients a11, a12, a21, a22, b1, b2
depend on a considered case. Explicit formulas for these coefficients are given in §4.3. Using
the notation of (4.20), we obtain the following solution:

x1 =
b1a22 − a12b2
a11a22 − a12a21

, x2 =
a11b2 − b1a21

a11a22 − a12a21
. (4.21)

Most of the known algorithms solve a system of normal equations in order to get expres-
sions for the inner control points (4.3). Such an approach makes those expressions dependent
on the inverse of a certain matrix. As a result, formulas for the continuity parameters also
depend on the inverse (see, e.g., [70, 114]). Since the method given in this chapter is based
on Theorem 4.2, the formulas are truly explicit.

Observe that in the above-mentioned cases, one can easily give the following form of the
quadratic error function (4.6):

E(α,β)(x1, x2) =
1

2

[
x1, x2

] [a∗11 a∗12

a∗21 a∗22

] [
x1

x2

]
+
[
x1, x2

] [b∗1
b∗2

]
+ c∗ = E

(α,β)
∗ (x1, x2) + c∗,

(4.22)
where

a∗ij := 2Haij , b
∗
i := −2Hbi (i, j = 1, 2) (4.23)

for (4.8). Obviously, a constant c∗ is meaningless in the minimization process, therefore,
E

(α,β)
∗ (x1, x2) denotes the significant terms of E(α,β)(x1, x2). If the solution (4.21) does not

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 46

fulfill the conditions λ1, µ1 > 0, then one can use E(α,β)
∗ (x1, x2) as an objective function for

the minimization problem with constraints.

4.3 Explicit formulas for the continuity parameters

In Remark 4.4, we describe the method of computing the parameters {λi} and {µj} in the
cases of G1,1, C−,1/G1,2, C1,−/G2,1 and C1,1/G2,2. These parameters depend on certain
coefficients (see (4.21)). Now, we give explicit formulas for the coefficients.

4.3.1 G1,1-constrained case

In the case of G1,1 continuity conditions, we set x1 := λ1, x2 := µ1, and compute the required
coefficients by

a11 := A
(0,0)
1 (1,m− 2, 1, 0, 1,m− 2, 1, 0),

a12, a21 := −A(0,0)
1 (1,m− 2, 1, 0, 2,m− 1,m− 1, n− 1),

a22 := A
(0,0)
1 (2,m− 1,m− 1, n− 1, 2,m− 1,m− 1, n− 1),

b1 := −A(0,0)
2 (1,m− 2, 1, 0),

b2 := A
(0,0)
2 (2,m− 1,m− 1, n− 1),

where

A
(u,v)
1 (a, b, c, e, f, g, s, t) :=

d∑
h=1

b∑
j=a

Nu(j,ph, c, e)

g∑
i=f

L(i, j)Nv(i,p
h, s, t), (4.24)

A
(u,v)
2 (a, b, c, e) :=

d∑
h=1

b∑
j=a

Nu(j,ph, c, e)

[
m∑
i=0

L(i, j)Kv(i,p
h)− Fnj(ph)

]
(4.25)

with (4.9),

L(i, j) := (α+ β +m+ 2)−1
m

(
m

j

)(
m

i

)
(α+ 1)2m−i−j(β + 1)i+j , (4.26)

N0(j,q, s, t) :=

n

m
∆qt (j = s),

−n∆qt

n∑
i=0

(
n

i

)−1(n−m
i− s

)
φji otherwise,

(4.27)

K0(i,q) :=

q0 (i = 0, 1),

n∑
j=0

φij

[
qj −

(
n

j

)−1
(

1∑
h=0

+

m∑
h=m−1

)
M(j, h)K0(h,q)

]
(2 ≤ i ≤ m− 2),

qn (i = m− 1,m)

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 47

for

q := [q0, q1, . . . , qn] , M(i, j) :=

(
n−m
i− j

)(
m

j

)
. (4.28)

4.3.2 C1,1/G2,2-constrained case

In the case of C1,1/G2,2 continuity conditions, we set λ1, µ1 := 1, x1 := λ2, x2 := µ2, and
compute the required coefficients by

a11 := A
(1,1)
1 (2,m− 3, 2, 0, 2,m− 3, 2, 0),

a12, a21 := A
(1,1)
1 (2,m− 3, 2, 0, 3,m− 2,m− 2, n− 1),

a22 := A
(1,1)
1 (3,m− 2,m− 2, n− 1, 3,m− 2,m− 2, n− 1),

b1 := −A(1,1)
2 (2,m− 3, 2, 0),

b2 := −A(1,1)
2 (3,m− 2,m− 2, n− 1),

using (4.24) and (4.25) with (4.9), (4.26),

N1(j,q, s, t) :=

1

m− 1
N0(j,q, s, t) (j = s),

1

(m− 1)2

(
m

s

)
N0(j,q, s, t) otherwise,

(4.29)

K1(i,q) :=

q0 (i = 0),

q0 +
n

m
∆q0 (i = 1),

q0 + 2
n

m
∆q0 +

(n− 1)2

(m− 1)2
∆2q0 (i = 2),

n∑
j=0

φij

[
qj −

(
n

j

)−1
(

2∑
h=0

+
m∑

h=m−2

)
M(j, h)K1(h,q)

]
(3 ≤ i ≤ m− 3),

qn − 2
n

m
∆qn−1 +

(n− 1)2

(m− 1)2
∆2qn−2 (i = m− 2),

qn −
n

m
∆qn−1 (i = m− 1),

qn (i = m)

(4.30)

for (4.27) and (4.28).

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 48

4.3.3 C1,−/G2,1-constrained case

In the case of C1,−/G2,1 continuity conditions, we set λ1 := 1, x1 := λ2, x2 := µ1, and
compute the required coefficients by

a11 := A
(1,1)
1 (2,m− 2, 2, 0, 2,m− 2, 2, 0),

a12, a21 := −A(0,1)
1 (3,m− 1,m− 1, n− 1, 2,m− 2, 2, 0),

a22 := A
(0,0)
1 (3,m− 1,m− 1, n− 1, 3,m− 1,m− 1, n− 1),

b1 := −A(1,2)
2 (2,m− 2, 2, 0),

b2 := A
(0,2)
2 (3,m− 1,m− 1, n− 1),

using (4.24) and (4.25) with (4.9), (4.26), (4.27), (4.29) and

K2(i,q) :=

K1(i,q) (i = 0, 1, 2),

n∑
j=0

φij

[
qj −

(
n

j

)−1
(

2∑
h=0

+

m∑
h=m−1

)
M(j, h)K2(h,q)

]
(3 ≤ i ≤ m− 2),

K1(m,q) (i = m− 1,m)

for (4.28) and (4.30).

4.3.4 C−,1/G1,2-constrained case

In the case of C−,1/G1,2 continuity conditions, we set µ1 := 1, x1 := λ1, x2 := µ2, and
compute the required coefficients by

a11 := A
(0,0)
1 (1,m− 3, 1, 0, 1,m− 3, 1, 0),

a12, a21 := A
(0,1)
1 (1,m− 3, 1, 0, 2,m− 2,m− 2, n− 1),

a22 := A
(1,1)
1 (2,m− 2,m− 2, n− 1, 2,m− 2,m− 2, n− 1),

b1 := −A(0,3)
2 (1,m− 3, 1, 0),

b2 := −A(1,3)
2 (2,m− 2,m− 2, n− 1),

using (4.24) and (4.25) with (4.9), (4.26), (4.27), (4.29) and

K3(i,q) :=

K1(0,q) (i = 0, 1),

n∑
j=0

φij

[
qj −

(
n

j

)−1
(

1∑
h=0

+
m∑

h=m−2

)
M(j, h)K3(h,q)

]
(2 ≤ i ≤ m− 3),

K1(i,q) (i = m− 2,m− 1,m)

for (4.28) and (4.30).

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 49

4.4 Algorithms

In this subsection, we show the details of implementation of the proposed methods of Cp,q/Gk,l-
constrained and Gk,l-constrained degree reduction of Bézier curves.

4.4.1 Auxiliary computations

To begin with, recall that the quantities φij (i = k + 1, k + 2, . . . ,m− l − 1; j = 0, 1, . . . , n)
are related to the coefficients ψij (see (3.20)). The latter can be put in a rectangular table
(see Table 2) and computed using Algorithm 3.16.

Next, we use Theorem 4.2 to give the algorithm of computing expressions for the control
points of the curve (1.18).

Algorithm 4.5. [Evaluation of the control points]
Input: α, β – parameters of the weighted L2-norm (1.13);

n, p0, p1, . . . , pn – degree and control points of the original Bézier curve (1.17);
m – degree of the reduced Bézier curve (1.18);
k, l – orders of the geometric continuity (see (1.20));
φ-table precomputed using Algorithm 3.16 and the formula (3.20)

Optional input: values of the continuity parameters λ1, λ2, . . . , λk and µ1, µ2, . . . , µl

Assumptions: n > m > 0; −1 ≤ k, l ≤ 3; k + l < m− 1; α, β > −1

Output: expressions (or values) for the control points of the Bézier curve (1.18)

Step 1. Compute

(i) r0, r1, . . . , rk by (2.11)–(2.13);

(ii) rm, rm−1, . . . , rm−l by (2.14)–(2.16).

Step 2. Compute υ0, υ1, . . . , υn by (4.4).

Step 3. Compute rk+1, rk+2, . . . , rm−l−1 by (4.3).

Step 4. Return r0, r1, . . . , rm.

Observe that Algorithm 4.5 can be used in two ways. For given values of the continuity
parameters {λi} and {µj}, we obtain values of the control points r0, r1, . . . , rm. In the case of
unknown values for the parameters, the algorithm gives expressions which depend on these
parameters. Note that the complexity of Algorithm 4.5 is O(mn).

4.4.2 Cp,q/Gk,l-constrained degree reduction algorithms

Now, we give two algorithms of Cp,q/Gk,l-constrained degree reduction (see §4.2.2). The first
algorithm makes use of Remark 4.4, therefore, it solves the cases of G1,1, C−,1/G1,2, C1,−/G2,1

and C1,1/G2,2, using explicit formulas for the continuity parameters {λi} and {µj} (see §4.3).
However, in the case on nonpositive values for λ1 or µ1, the algorithm solves the quadratic
programming problem subject to the conditions (4.19). More than 40 different tests were
performed (the results of some of them are presented in §4.5). None of them caused such a
problem, therefore, we conclude that it happens very rarely. The second algorithm is much

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 50

more general. It accepts any k and l not exceeding 3. However, there are no explicit formulas
for the continuity parameters {λi} and {µj}.

Both algorithms consist of two phases. During Phase A, we minimize the error (4.6),
which—by the results given in Theorem 4.2—depends only on the parameters {λi} and {µj}.
As a result, we obtain optimum values for these parameters. During Phase B, we use the
obtained values of the continuity parameters to compute the control points r0, r1, . . . , rm using
Algorithm 4.5.

Remark 4.6. According to Remark 2.2, if −1 ≤ k, l < 1, then we are dealing with the
Ck,l-constrained case. Thus, there are no continuity parameters to determine, and Phase A
can be omitted (see Algorithm 4.7, Step 2).

Algorithm 4.7. [Cp,q/Gk,l-constrained degree reduction of Bézier curves — selected cases]
Input: α, β – parameters of the weighted L2-norm (1.13);

n, p0, p1, . . . , pn – degree and control points of the original Bézier curve (1.17);
m – degree of the reduced Bézier curve (1.18);
k, l – orders of the geometric continuity (see (1.20));
z0, z1 – lower bounds for the parameters λ1 and µ1, respectively (see (4.19))

Assumptions: n > m > 0; z0, z1 > 0; α, β > −1; k + l < m − 1; (k = 1 and l = 2) or
(k = 2 and l = 1) or (k = l = 1) or (k = l = 2) or (−1 ≤ k, l < 1)

Output: control points of the Cp,q/Gk,l-constrained degree reduced Bézier curve

Phase A

Step 1. Compute φij (i = k + 1, k + 2, . . . ,m − l − 1; j = 0, 1, . . . , n) using Algorithm 3.16
and the formula (3.20).

Step 2. Check if the remaining steps of Phase A are necessary

If (k, l < 1) then go to Step 6.

Step 3. Simplify the problem

(i) If (k > 1) then λ1 := 1;

(ii) If (l > 1) then µ1 := 1.

Step 4. Use explicit formulas for the continuity parameters

(i) If (k = l = 1) then

• compute λ1 and µ1 by (4.21) using explicit formulas given in §4.3.1;

(ii) If (k = 2 and l = 1) then

• compute λ2 and µ1 by (4.21) using explicit formulas given in §4.3.3;

(iii) If (k = 1 and l = 2) then

• compute λ1 and µ2 by (4.21) using explicit formulas given in §4.3.4;

(iv) If (k = l = 2) then

• compute λ2 and µ2 by (4.21) using explicit formulas given in §4.3.2;
• go to Step 6.

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 51

Step 5. Check if the solution is feasible

If (λ1 ≤ 0 or µ1 ≤ 0) then

(i) c := {λ1 ≥ z0, µ1 ≥ z1};
(ii) If (k 6= 1) then c := c \ {λ1 ≥ z0};

(iii) If (l 6= 1) then c := c \ {µ1 ≥ z1};
(iv) compute a∗11, a

∗
12 = a∗21, a

∗
22, b

∗
1, b
∗
2 by (4.23);

(v) compute values of the continuity parameters by solving the quadratic program-
ming problem of minimizing the error E(α,β)

∗ (x1, x2), given by (4.22), subject to the
constraints c.

Phase B

Step 6. Execute Algorithm 4.5 with the computed values of the continuity parameters, and
return the solution, i.e., the control points r0, r1, . . . , rm.

Algorithm 4.8. [Cp,q/Gk,l-constrained degree reduction of Bézier curves]
Input: α, β – parameters of the weighted L2-norm (1.13);

n, p0, p1, . . . , pn – degree and control points of the original Bézier curve (1.17);
m – degree of the reduced Bézier curve (1.18);
k, l – orders of the geometric continuity (see (1.20));
z0, z1 – lower bounds for the parameters λ1 and µ1, respectively (see (4.19))

Assumptions: n > m > 0; z0, z1 > 0; α, β > −1; k + l < m− 1; −1 ≤ k, l < 3

Output: control points of the Cp,q/Gk,l-constrained degree reduced Bézier curve

Phase A

Step 1. Check if the considered case can be solved using Algorithm 4.7

If (k = 1 and l = 2) or (k = 2 and l = 1) or (k = l = 1) or (k = l = 2) or (k, l < 1)
then execute Algorithm 4.7 and return its result.

Step 2. Simplify the problem

(i) a := 1; b := 1;

(ii) If (k > 1) then

• λ1 := 1;
• a := 2;

(iii) If (l > 1) then

• µ1 := 1;
• b := 2.

Step 3. For h = 1, 2, . . . , d, and i = 1, 2, . . . , k,m− l,m− l + 1, . . . ,m− 1, compute

(i)
∂rih
∂λu

(u = a, a+ 1, . . . , k) by (4.11)–(4.13);

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 52

(ii)
∂rih
∂µv

(v = b, b+ 1, . . . , l) by (4.14)–(4.16).

Step 4. Compute φij (i = k + 1, k + 2, . . . ,m − l − 1; j = 0, 1, . . . , n) using Algorithm 3.16
and the formula (3.20).

Step 5. For h = 1, 2, . . . , d, and i = k + 1, k + 2, . . . ,m− l − 1, compute

(i)
∂rih
∂λu

(u = a, a+ 1, . . . , k) by (4.17);

(ii)
∂rih
∂µv

(v = b, b+ 1, . . . , l) by (4.18).

Step 6. Obtain λa, λa+1, . . . , λk, and µb, µb+1, . . . , µl by solving the linear system

d∑
h=1

m−l−1∑
j=u

[
Fmj(r

h)− Fnj(ph)
] ∂rjh
∂λu

= 0 (u = a, a+ 1, . . . , k),

d∑
h=1

m−v∑
j=k+1

[
Fmj(r

h)− Fnj(ph)
] ∂rjh
∂µv

= 0 (v = b, b+ 1, . . . , l),

where Ftj(q) is computed by (4.9).

Step 7. Check if the solution is feasible

If (λ1 ≤ 0 or µ1 ≤ 0) then

(i) c := {λ1 ≥ z0, µ1 ≥ z1};
(ii) If (k 6= 1) then c := c \ {λ1 ≥ z0};

(iii) If (l 6= 1) then c := c \ {µ1 ≥ z1};
(iv) compute E(α,β)(λ1, λ2, . . . , λk, µ1, µ2, . . . , µl) by (4.6);

(v) obtain λa, λa+1, . . . , λk, and µb, µb+1, . . . , µl by solving the quadratic program-
ming problem of minimizing the error E(α,β) subject to the constraints c.

Phase B

Step 8. Execute Algorithm 4.5 with the computed values of the continuity parameters, and
return the solution, i.e., the control points r0, r1, . . . , rm.

4.4.3 Gk,l-constrained degree reduction algorithm

Finally, we present Algorithm 4.9 which solves the most general version of the Gk,l-constrained
degree reduction problem (see Problem 1.9), using Algorithms 3.16, 4.5, 4.7 and the method
described in §4.2.1. The algorithm works for any k and l not exceeding 3. The computations
are organized in two phases which are analogical to the ones mentioned in §4.4.2.

Since Algorithm 4.7 uses explicit formulas, it is executed by Algorithm 4.9 whenever
possible (see Algorithm 4.9, Step 1). Obviously, Algorithm 4.9 is, in general, computationally
more expensive than the previous algorithms. However, it produces the most accurate results
because no simplifying assumptions are made.

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 53

Algorithm 4.9. [Gk,l-constrained degree reduction of Bézier curves]
Input: α, β – parameters of the weighted L2-norm (1.13);

n, p0, p1, . . . , pn – degree and control points of the original Bézier curve (1.17);
m – degree of the reduced Bézier curve (1.18);
k, l – orders of the geometric continuity (see (1.20));
z0, z1 – lower bounds for the parameters λ1 and µ1, respectively (see (4.19))

Assumptions: n > m > 0; z0, z1 > 0; α, β > −1; k + l < m− 1; −1 ≤ k, l < 3

Output: control points of the Gk,l-constrained degree reduced Bézier curve

Phase A

Step 1. Check if the considered case can be solved using Algorithm 4.7

If (k, l < 1 or k = l = 1) then execute Algorithm 4.7 and return its result.

Step 2. Compute φij (i = k + 1, k + 2, . . . ,m − l − 1; j = 0, 1, . . . , n) using Algorithm 3.16
and the formula (3.20).

Step 3. Compute E(α,β)(λ1, λ2, . . . , λk, µ1, µ2, . . . , µl) by (4.6).

Step 4. Determine set c of constraints

(i) c := {λ1 ≥ z0, µ1 ≥ z1};
(ii) If (k < 1) then c := c \ {λ1 ≥ z0};

(iii) If (l < 1) then c := c \ {µ1 ≥ z1}.

Step 5.

If (k > 1 or l > 1) then

• obtain λ1, λ2, . . . , λk, and µ1, µ2, . . . , µl by solving the nonlinear programming
problem of minimizing the error E(α,β) subject to the constraints c;

else

• obtain λ1, λ2, . . . , λk, and µ1, µ2, . . . , µl by solving the quadratic programming
problem of minimizing the error E(α,β) subject to the constraints c.

Phase B

Step 6. Execute Algorithm 4.5 with the computed values of the continuity parameters, and
return the solution, i.e., the control points r0, r1, . . . , rm.

4.5 Examples

This subsection provides of the application of Algorithms 4.7–4.9. For each example, we give
weighted L2-error E(α,β)

2 (see (4.5)) and maximum error E∞ (see (1.11)).
In the experiments, we consider the natural choices of α and β, i.e.,

(α, β) ∈
{

(0, 0),

(
1

2
,
1

2

)
,

(
−1

2
,
1

2

)
,

(
1

2
,−1

2

)
,

(
−1

2
,−1

2

)}
,

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 54

and set the lower bounds z0, z1 of λ1, µ1 to 10−4 (see (4.19)). Taking into account the different
types of continuity constraints, we compare the following cases:

(i) Ck,l-constrained case, solved using Algorithm 4.7;

(ii) Cp,q/Gk,l-constrained case, solved using Algorithms 4.7 and 4.8;

(iii) Gk,l-constrained case, solved using Algorithm 4.9.

The results have been obtained on a computer with Intel Core i5-3337U 1.8GHz pro-
cessor and 8GB of RAM, using MapleTM13 with 32-digit arithmetic. We use MapleTM fsolve
procedure, in the Cp,q/Gk,l-constrained case, to solve a system of linear equations, and
QPSolve, NLPSolve procedures, to solve quadratic and nonlinear programming problems,
respectively. QPSolve uses an iterative active set method, and for NLPSolve we select sqp
method (see §4.2.1). Initial points for both procedures correspond to the values of con-
tinuity parameters in the Ck,l-constrained case (see Remark 2.3). Obviously, for the se-
lected cases of continuity constraints (see Remark 4.4), explicit formulas are used, since
Algorithms 4.8 and 4.9 execute Algorithm 4.7 whenever possible.

Example 4.10. First, let us revisit Examples 1.5 and 1.6, i.e., consider the Bézier curve
“alpha” of degree 11. The results of degree reduction are given in Table 3. Figures 8a and 8b
illustrate two of the considered cases. One can see that when it comes to minimizing E∞
error, usually a good choice is α = β = −1

2 . As expected, the solutions of the Gk,l-constrained
case are the most accurate, while the Cp,q/Gk,l-constrained approach gives less precise results.
The Ck,l conditions tend to be too restrictive, especially for k or l exceeding 2.

(a) (b)

Figure 8: Degree reduction of 11th degree Bézier curve (blue solid line) to 7th degree Bézier curve with Ck,l (black
dotted line), Cp,q/Gk,l (green dash-dotted line) and Gk,l (red dashed line) continuity constraints; parameters: (a)
α = β = − 1

2
, p = q = 1, k = l = 2, and (b) α = β = − 1

2
, p = 1, q = −, k = 3, l = 1.

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 55

Parameters Ck,l solution Cp,q/Gk,l solution Gk,l solution

m k l p q α β E
(α,β)
2 E∞ E

(α,β)
2 E∞ E

(α,β)
2 E∞

7 2 2 1 1 0 0 3.73e+0 5.97e+0 2.83e+0 5.27e+0 9.31e−1 2.26e+0

−1
2 −1

2 5.75e+0 5.83e+0 4.40e+0 5.14e+0 1.67e+0 1.91e+0

−1
2

1
2 3.83e+0 7.53e+0 2.62e+0 6.42e+0 7.85e−1 2.91e+0

1
2 −1

2 3.83e+0 7.69e+0 3.18e+0 5.18e+0 1.26e+0 2.19e+0
1
2

1
2 2.43e+0 6.10e+0 1.83e+0 5.40e+0 5.32e−1 2.54e+0

7 3 1 1 − 0 0 9.13e+0 1.62e+1 2.51e+0 5.11e+0 1.02e+0 2.41e+0

−1
2 −1

2 1.40e+1 1.67e+1 4.07e+0 4.95e+0 1.81e+0 2.07e+0

−1
2

1
2 9.41e+0 1.95e+1 2.18e+0 6.38e+0 7.45e−1 3.11e+0

1
2 −1

2 9.17e+0 1.88e+1 2.98e+0 4.91e+0 1.45e+0 1.99e+0
1
2

1
2 6.00e+0 1.58e+1 1.56e+0 5.25e+0 5.88e−1 2.69e+0

Table 3: Weighted L2-errors and maximum errors of degree reduction of 11th degree Bézier curve “alpha”.

Example 4.11. Now, we apply the algorithms to the Bézier curve “heart” of degree 13 (for
the control points, see [92, Appendix B]), and consider the case of k = l = 2. The results are
presented in Table 4. Notice that the case of α = β = 0 was also considered in [92, §5.2] and
[114, Example 4]. As in [114], we can clearly see that the solution of the G2,2-constrained
case, in this thesis obtained using Algorithm 4.9, is more accurate than the result given by
the approach proposed in [92], which leads to the C1,1/G2,2-constrained case (the same as for
Algorithms 4.7 and 4.8). As we consider different weight functions, it can be seen that the
best choice to minimize E∞ is α = β = −1

2 . Figure 9 presents the case of α = β = 0.
Next, we focus on the running times. For the comparison of the Gk,l-constrained algo-

rithms, see Table 5. Notice that, in some cases, Algorithm 4.9 is slightly faster than the
methods from [114]. We use MapleTM fsolve procedure to solve the cubic equation [114,
(23)] associated with the G2,1-constrained case. Implementation of the G2,2-constrained
method from [114] requires an unconstrained nonlinear programming solver . According to
the experiments, the nonlinear simplex method (NLPSolve command with option method
= nonlinearsimplex and the initial point λ = η = 1) is the fastest solver available in
MapleTM13. Therefore, we use this solver for the purpose of the comparison. It is worth men-
tioning that the authors of [114] have omitted the constraints (4.19). Consequently, in some
rare cases, the resulting curve may not preserve original tangent directions at the endpoints
(see Remark 4.3). To avoid this issue, one should implement the improvements proposed by
Lu [74].

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 56

Parameters C2,2 solution C1,1/G2,2 solution G2,2 solution

m α β E
(α,β)
2 E∞ E

(α,β)
2 E∞ E

(α,β)
2 E∞

8 0 0 1.52e+0 2.52e+0 6.36e−1 1.12e+0 3.57e−1 7.14e−1

−1
2 −1

2 2.37e+0 2.39e+0 1.05e+0 1.00e+0 6.16e−1 5.28e−1

−1
2

1
2 1.58e+0 3.34e+0 6.42e−1 1.55e+0 4.23e−1 9.40e−1

1
2 −1

2 1.52e+0 3.48e+0 7.44e−1 1.31e+0 3.65e−1 8.90e−1
1
2

1
2 9.79e−1 2.64e+0 3.89e−1 1.24e+0 2.11e−1 9.03e−1

Table 4: Weighted L2-errors and maximum errors of degree reduction of 13th degree Bézier curve “heart”.

Parameters Running times [ms]

m k l Algorithm 4.9 Zhou et al. [114]

8 2 1 92 108

10 2 1 121 137

12 2 1 168 166

8 2 2 153 204

10 2 2 298 248

12 2 2 290 292

Table 5: Running times of the Gk,l-constrained degree reduction of 13th degree Bézier curve “heart”; parameters:
α = β = 0.

Figure 9: Degree reduction of 13th degree Bézier curve (blue solid line) to 8th degree Bézier curve with C2,2 (black dotted
line), C1,1/G2,2 (green dash-dotted line) and G2,2 (red dashed line) continuity constraints; parameters: α = β = 0.

CHAPTER 4. GK,L-CONSTRAINED DEGREE REDUCTION OF BÉZIER CURVES 57

Example 4.12. Finally, we give the composite Bézier curve “dolphin” obtained by joining
nine Bézier curves (for the control points, see http://www.ii.uni.wroc.pl/~pgo/dolphin.
txt). We apply the algorithms independently to each Bézier curve and compare the quality of
the results in Table 6. For each curve, we set α = β := −1

2 , which as we found out, is usually
the best choice to minimize E∞ error. The results confirm the advantage of Algorithm 4.9
over the other ones. The degree reduced composite Bézier curves are shown in Figure 10.

Parameters Ck,l solution Cp,q/Gk,l solution Gk,l solution

Curves n m k l p q E
(α,β)
2 E∞ E

(α,β)
2 E∞ E

(α,β)
2 E∞

D
ol

ph
in

Forehead 8 4 2 0 1 − 8.75e+0 8.71e+0 3.65e+0 3.43e+0 3.51e+0 3.52e+0

Mouth 18 7 1 3 − 1 3.35e+1 4.09e+1 7.86e+0 1.04e+1 6.34e+0 8.08e+0

Flipper: part 1 12 5 1 2 − 1 6.23e+0 6.84e+0 5.45e+0 5.50e+0 3.60e+0 3.63e+0

Flipper: part 2 14 5 2 1 1 − 9.94e+0 1.00e+1 7.26e+0 6.83e+0 5.34e+0 5.49e+0

Tail: part 1 10 5 3 0 1 − 2.66e+1 2.93e+1 2.28e+1 2.25e+1 5.08e+0 5.40e+0

Tail: part 2 12 5 1 2 − 1 8.35e+0 9.32e+0 4.04e+0 4.28e+0 3.82e+0 3.91e+0

Back 8 5 2 1 1 − 3.35e+0 4.03e+0 1.67e+0 2.03e+0 1.52e+0 1.56e+0

Dorsal fin: part 1 6 5 2 0 1 − 4.77e−1 4.73e−1 2.27e−1 1.98e−1 2.25e−1 1.98e−1

Dorsal fin: part 2 13 6 0 3 − 1 7.54e+0 8.18e+0 2.25e+0 2.47e+0 1.48e+0 1.73e+0

Table 6: Weighted L2-errors and maximum errors of degree reduction of nine-segment composite Bézier curve “dolphin”.

Figure 10: Degree reduction of nine-segment composite Bézier curve (blue solid line) to degree reduced composite Bézier
curve with Ck,l (black dotted line), Cp,q/Gk,l (green dash-dotted line) and Gk,l (red dashed line) continuity constraints
imposed for each segment of the composite curve. The parameters are specified in Table 6.

http://www.ii.uni.wroc.pl/~pgo/dolphin.txt
http://www.ii.uni.wroc.pl/~pgo/dolphin.txt

Chapter 5

Degree reduction of planar Bézier
curves with box constraints

In this chapter, we propose a new approach to the problem of Ck,l-constrained degree reduc-
tion of planar Bézier curves with respect to the least squares norm. First, we give illustrative
example to show that the solution of the conventional degree reduction problem may not
be suitable for further modification and applications (see §5.1). In order to eliminate those
issues, we formulate a new problem of degree reduction (see §5.2) and present two methods
of solving it. The first one is based on quadratic programming approach (see §5.3) and the
other one on BVLS algorithm [93] (see §5.4). Additionally, we give two methods of solving
the so-called subproblem which is an essential part of BVLS algorithm (see §5.5). In §5.6, we
show more examples to justify the new idea. The results given in this chapter are based on
papers [43, 46].

5.1 Motivation

Let us recall that the conventional degree reduction of Bézier curves is to minimize a cho-
sen error function subject to some continuity constraints at the endpoints (see §1.6.1). For
example, let us consider the following degree reduction problem (cf. Problem 1.8).

Problem 5.1. [Traditional degree reduction of planar Bézier curves]
Given a Bézier curve P ∈ Π2

n,

P (t) :=

n∑
i=0

piB
n
i (t) (0 ≤ t ≤ 1),

find a Bézier curve R ∈ Π2
m,

R(t) :=

m∑
i=0

riB
m
i (t) (0 ≤ t ≤ 1; m < n),

satisfying the following conditions:

(i) least squares error

E ≡ ‖P −R‖2 :=

√√√√ N∑
h=0

‖P (th)−R(th)‖2 (5.1)

58

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 59

is minimized, where {th}Nh=0 (N ∈ N) is a given strictly increasing sequence whose
elements are in the interval [0, 1];

(ii) P and R are Ck,l-continuous (k, l ≥ −1 and k + l < m− 1) at the endpoints, i.e.,

P (i)(0) = R(i)(0) (i = 0, 1, . . . , k),

P (j)(1) = R(j)(1) (j = 0, 1, . . . , l).

}
(5.2)

Remark 5.2. A designer that modifies control points uses the convex hull property (see §1.4,
pt. 2), which gives an intuition on shape and location of a curve. It can be said that the size
of the convex hull is a measure of predictability of the curve. As we shall see, the traditional
approach can give precise results, however, there is no control over the location of the resulting
control points. Consequently, those points may lie far away from the plot of the curve. Such
a drawback can significantly disturb further modeling of the curve.

Remark 5.3. Notice that simple tests based on the convex hull property can give quick
solutions of problems which usually require more expensive calculation. For example, if
convex hulls of two curves do not intersect, which is fairly easy to determine, then the curves
do not intersect, which normally is more expensive to decide. Intersection problem has many
practical applications. Suppose that two Bézier curves represent paths of robotic arms. To
avoid collisions, one should solve the intersection problem (see [33, p. 49]). Analogously, one
can quickly check that a curve and a surface do not intersect, or decide that a point does not
lie on a curve. This strategy can be useful, but only if control points are not far away from a
curve and the corresponding convex hull is not too big.

In order to see the issue clearly, let us consider the following example.

Example 5.4. We give the Bézier curve “Ampersand” of degree 10, defined by the control
points (109, 3), (40, 121), (86, 37), (−28, 200), (183, 60), (196, 79), (38, 109), (−3,−15), (49, 0),
(115,−10), (108, 22). Assuming that k = l = 0, th = h/14 (h = 0, 1, . . . , 14) (cf. (5.1), (5.2));
we look for a Bézier curve of degree 8 being the solution of Problem 5.1.

Figure 11a shows the plots of both curves. The approximation is quite precise (errors:
E = 1.26e+0 and E∞ = 1.27e+0; see (1.11)), but this solution has the defect mentioned in
Remarks 5.2 and 5.3. See Figure 11b which presents the location of the control points of both
curves. Clearly, the resulting ones are located far away from the plot of the degree reduced
curve. Furthermore, the convex hull of the resulting curve is much bigger than the one of the
original curve, and useless in finding quick solutions of the problems mentioned earlier (see
Remark 5.3).

Now, let us impose some additional constraints on the searched control points. We enforce
their location inside the specified rectangular area (including edges of the rectangle). Further
on in this thesis, such restrictions are called box constraints. This time, we obtain the degree
reduced curve having more intuitive location of the control points (see Figure 12). As a result,
it can be easily modified, which is desired from a practical point of view. In addition, this
approach leads to much smaller convex hull. Obviously, the errors must be inevitably larger
than for the traditional degree reduction because we have imposed the additional constraints
(errors: E = 4.18e+0 and E∞ = 4.16e+0). However, the result is still satisfying.

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 60

(a) (b)

Figure 11: The original Bézier curve (blue solid line with blue control points) and the degree reduced Bézier curve (red
dashed line with red control points) being the solution of Problem 5.1.

Figure 12: The original Bézier curve (blue solid line) and the degree reduced Bézier curve (red dashed line with red
control points) satisfying the conditions (i), (ii) and box constraints (blue dotted-dashed frame).

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 61

5.2 Problem of degree reduction of planar Bézier curves with
box constraints

Taking into account the remarks presented in the previous subsection, we formulate the
following problem of degree reduction of planar Bézier curves (cf. Problem 5.1).

Problem 5.5. [Degree reduction of planar Bézier curves with box constraints]
Let there be given a Bézier curve P = [Px, Py] ∈ Π2

n,

P (t) :=
n∑
i=0

piB
n
i (t) (0 ≤ t ≤ 1),

where pi := (pxi , p
y
i) ∈ R2. Find a Bézier curve R = [Rx, Ry] ∈ Π2

m,

R(t) :=
m∑
i=0

riB
m
i (t) (0 ≤ t ≤ 1; m < n),

satisfying the following conditions:

(i) least squares error

E ≡ ‖P −R‖2 =

√√√√ N∑
h=0

‖P (th)−R(th)‖2 (5.3)

is minimized, where {th}Nh=0 (N ∈ N) is a given strictly increasing sequence whose
elements are in the interval [0, 1];

(ii) P and R are Ck,l-continuous (k, l ≥ −1 and k + l < m− 1) at the endpoints, i.e.,

P (i)(0) = R(i)(0) (i = 0, 1, . . . , k),

P (j)(1) = R(j)(1) (j = 0, 1, . . . , l);

}
(5.4)

(iii) control points ri := (rxi , r
y
i) (k < i < m − l) are located inside the specified rectangular

area, including edges of the rectangle, i.e., the following box constraints are fulfilled:

cz ≤ rzi ≤ Cz (i = k + 1, k + 2, . . . ,m− l − 1; z = x, y), (5.5)

where cx, cy, Cx, Cy ∈ R.

To begin with, recall that the continuity conditions (5.4) imply the well-known formu-
las (2.3) and (2.4) for the control points r0, r1, . . . , rk and rm, rm−1, . . . , rm−l, respectively.
For details, see §2.1.

Next, it is easy to check that
E2 = E2

x + E2
y ,

where

Ez :=

√√√√ N∑
h=0

(Pz(th)−Rz(th))2 (z = x, y).

Consequently, the solution can be obtained in a componentwise way. Therefore, it is sufficient
to explain how to compute rxk+1, r

x
k+2, . . . , r

x
m−l−1 in order to minimize Ex with the box

constraints for z = x (cf. (5.5)).

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 62

5.3 Degree reduction using quadratic programming approach

In this subsection, we use the quadratic programming approach to solve Problem 5.5.
Quadratic programming is an optimization problem of minimizing (or maximizing) a

quadratic objective function f of several variables x ∈ Ri subject to linear constraints on
these variables. More precisely, we look for the extremum of function

f(x) = cTx +
1

2
xTQx, (5.6)

where Q ∈ Ri×i, c ∈ Ri, subject to the following constraints:

Gx ≤ h, x ≥ 0, (5.7)

where G ∈ Rj×i and h ∈ Rj . Here the notation v ≤ w means that vi ≤ wi (i = 1, 2, . . . , q),
where v := [v1, v2, . . . , vq]

T ∈ Rq and w := [w1, w2, . . . , wq]
T ∈ Rq. The definition of v ≥ w is

similar.
Before we proceed further, we provide some other useful definitions and notation. We

define vectors of coordinates of the original and searched control points,

px := [px0 , p
x
1 , . . . , p

x
n]T , rx := [rx0 , r

x
1 , . . . , r

x
m]T ,

respectively; vectors of lower and upper bounds (cf. (5.5)),

lx := [cx, cx, . . . , cx]T ∈ Rm−l−k−1, ux := [Cx, Cx, . . . , Cx]T ∈ Rm−l−k−1,

respectively; and a vector of Bernstein polynomials of degree n evaluated at a point t,

bn,t := [Bn
0 (t), Bn

1 (t), . . . , Bn
n(t)] .

In order to obtain selected submatrices and subvectors, we will use the following notation.
Let M ∈ Rn×m be a matrix, and let A := {i1, i2, . . . , iα} ⊂ [0, n− 1], B := {j1, j2, . . . , jβ} ⊂
[0,m− 1] be sets of natural numbers sorted in ascending order. The notation

MA,B (5.8)

defines a matrix formed by rows i1 + 1, i2 + 1, . . . , iα + 1 and columns j1 + 1, j2 + 1, . . . , jβ + 1
of the matrix M. Similarly, we use vA, where v is a vector in Rn.

Now, a goal is to represent the significant terms of E2
x ≡ E2

x(rx) in the form (5.6). First,
notice that

E2
x(rx) =

N∑
h=0

(bn,thpx − bm,thrx)2 =

N∑
h=0

(
bn,thpx − bDm,thr

D
x − bCm,thr

C
x

)2
=

N∑
h=0

(
bDm,thr

D
x

)2 − 2
N∑
h=0

(
(bn,thpx)

(
bDm,thr

D
x

)
−
(
bCm,thr

C
x

) (
bDm,thr

D
x

))
+

N∑
h=0

(
(bn,thpx)2 +

(
bCm,thr

C
x

)2 − 2 (bn,thpx)
(
bCm,thr

C
x

))
(5.9)

=: g
(
rDx
)

+

N∑
h=0

(
(bn,thpx)2 +

(
bCm,thr

C
x

)2 − 2 (bn,thpx)
(
bCm,thr

C
x

))
,

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 63

where C := {0, 1, . . . , k,m− l,m− l + 1, . . . ,m} and D := {k + 1, k + 2, . . . ,m− l − 1}. Ob-
serve that the term (5.9) is constant, therefore, it is sufficient to minimize g. It is easy to
check that

g
(
rDx
)

= dT rDx +
1

2

(
rDx
)T

QrDx ,

where Q := [Qi,j] ∈ R(m−l−k−1)×(m−l−k−1) and d := [di] ∈ Rm−l−k−1 with

Qi,j := 2
N∑
h=0

Bm
i+k(th)Bm

j+k(th) (i, j = 1, 2, . . . ,m− l − k − 1), (5.10)

di := 2

N∑
h=0

(
bCm,thr

C
x − bn,thpx

)
Bm
i+k(th) (i = 1, 2, . . . ,m− l − k − 1).

Note that the constraints (5.5), for z = x, are not written in the form (5.7). However,
they can be easily adjusted. Assume that sx := rDx − lx and h := ux− lx. Then, the problem
is to minimize

g (sx + lx) = cT sx +
1

2
sTxQsx + dT lx +

1

2
lTxQlx

with respect to sx, where c := d + Qlx, subject to the constraints

Gsx ≤ h, sx ≥ 0, (5.11)

where G is the identity matrix of size m− l − k − 1.
Finally, taking into account that the term dT lx + 1

2 l
T
xQlx is constant, a goal is to find the

minimum of
f (sx) := cT sx +

1

2
sTxQsx (5.12)

subject to the constraints (5.11).
Obviously, if f has a minimum point at sx subject to the constraints (5.11), then we can

minimize E2
x subject to the constraints (5.4) and (5.5) by setting

rx :=
[
rx0 , r

x
1 , . . . , r

x
k , r

x
k+1, . . . , r

x
m−l−1︸ ︷︷ ︸

rDx

, rxm−l, . . . , r
x
m

]T
,

where rDx ≡
[
rxk+1, r

x
k+2, . . . , r

x
m−l−1

]T
:= sx + lx (see (2.3) and (2.4)).

It is well known that if matrix Q is positive semi-definite and the feasible set (5.7) is
nonempty, closed and bounded, then the quadratic programming problem has a solution (see,
e.g., [29, §2.3]).

Theorem 5.6. Matrix Q given by (5.10) is positive semi-definite.

Proof. Let x := [x0, x1, . . . , xm−l−k−2]T be any non-zero vector in Rm−l−k−1. Notice that

xTQx = 2

m−l−1∑
i=k+1

m−l−1∑
j=k+1

xi−k−1xj−k−1

N∑
h=0

Bm
i (th)Bm

j (th)

= 2
N∑
h=0

(
m−l−1∑
i=k+1

Bm
i (th)xi−k−1

)2

≥ 0,

which completes the proof.

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 64

The problem of minimizing (5.12) subject to (5.11) can be solved using, e.g., Wolfe’s
method [99] which is a simplex-type method for the quadratic programming. A disadvantage
of this method is that it has exponential worst-case complexity. However, it works relatively
fast, particularly for small-sized problems. In addition, there are some algorithms solving
quadratic programming problems in polynomial time (see [56, 105]), but in the context of the
degree reduction problem, their significance is only theoretical. Furthermore, there are some
papers dealing with the quadratic programming problem with box constraints,

min
v≤x≤w

cTx +
1

2
xTQx,

where x,v,w, c ∈ Ri and Q ∈ Ri×i (cf. (5.6), (5.7)). To solve such a problem, one can
use a variety of strategies, including active set methods (see, e.g., [39]) and interior point
algorithms (see, e.g., [49]). Some of the approaches combine the active set strategy with
gradient projection method (see, e.g., [80]). For extensive lists of references, see the mentioned
papers.

5.4 Degree reduction using BVLS algorithm

In this subsection, we solve Problem 5.5 using BVLS algorithm [93].
BVLS algorithm, which is a generalization of iterative NNLS algorithm (non-negative

least-squares) [59], solves the so-called bvls problem (bounded-variable least-squares) written
in the following form:

min
v≤x≤w

‖Ax− b‖, (5.13)

where A ∈ Rj×i, x,v,w ∈ Ri, b ∈ Rj . Here ‖ · ‖ is the Euclidean vector norm in Rj . The
strategy of the algorithm is to find the so-called active set for an optimal solution. We call
a constraint active if it forces a boundary value of a variable. A solution improves in each
iteration of the algorithm, until the optimal one is found, which happens in finite number of
steps (see [93, §2]).

In our case, the adjustment of Problem 5.5 to the form (5.13) is simple. We assume that
v := lx, w := ux, x := rDx , and A := [Ai,j] ∈ R(N+1)×(m−l−k−1), b := [bi] ∈ RN+1, where

Ai,j := Bm
j+k(ti−1) (i = 1, 2, . . . , N + 1; j = 1, 2, . . . ,m− l − k − 1),

bi := bn,ti−1px − bCm,ti−1
rCx (i = 1, 2, . . . , N + 1).

Here we use the notation of (5.8).
We will now describe, step by step, how to solve Problem 5.5 using BVLS algorithm. Note

that a more detailed description of the original algorithm, including all necessary formulas,
is given in [93].

Step 1. Let us assume that in each iteration of the algorithm, vector x contains current
values of all variables, set F contains indices of variables satisfying strict version of inequal-
ities (5.5), whereas sets L and U contain indices of variables which have reached minimum
and maximum permissible value, respectively (cf. (5.5)). At the beginning, we set

L ∪ U := ∅, F := {k + 1, k + 2, . . . ,m− l − 1} , x :=
lx + ux

2
,

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 65

and with such assumptions, in the first iteration, we omit the next step of the original algo-
rithm and go to Step 3.

Step 2. We omit this step in the first iteration of the algorithm. Let

g ≡ [gk+1, gk+2, . . . , gm−l−1]T := −∇h(x) ≡ AT (b−Ax) ,

where h(x) := 1
2‖Ax−b‖2. The algorithm selects a variable from set L∪U . The chosen vari-

able is the one that violates the following Karush-Kuhn-Tucker (KKT) optimality conditions
for the bvls problem:

gi ≤ 0 (i ∈ L), gj ≥ 0 (j ∈ U), (5.14)

the most in terms of the absolute value (for details, see [93, §2, pt. 4]). Next, an index of the
selected variable is transferred to set F . If none of the variables violate the above conditions,
then x is the optimal solution of the bvls problem, and the algorithm stops.

Step 3. Next, we solve the subproblem, i.e., we look for the optimal values of variables
whose indices are in set F subject to the fixed values of variables whose indices are in set L∪U .
More precisely, the subproblem is to minimize the function E2

x subject to the constraints (5.4)
and the conditions

rxi = cx (i ∈ L), rxj = Cx (j ∈ U) (5.15)

(cf. (5.5)). Notice that we ignore the constraints (5.5). Taking into account the arrange-
ments from Step 1, we observe that in the first iteration of the algorithm, the subproblem
is equivalent to the traditional degree reduction problem (see Problem 5.1) in the case of
z = x. In the next iterations, we are dealing with degree reduction problem subject to the
constraints (5.4) and (5.15) for z = x. See §5.5, where we describe in detail the methods of
solving the subproblem.

Step 4. If the obtained values of all variables, whose indices are in set F , satisfy strict
version of inequalities (5.5), then one should assign them to x, and go to Step 2 to check the
optimality of such a result. Otherwise, we have to repair the solution (see Step 5).

Step 5. Now, we repair the solution, i.e., we modify values of variables whose indices
are in set F (for details, see [93, §2, pts. 8–10]). The repair guarantees that (i) a variable
which was the farthest from fulfilling the constraints now has the boundary value; (ii) other
variables, whose indices are in set F , satisfy the constraints (5.5). As a result of the repair,
an index of at least one variable is transferred from set F to set L or U . After determining
elements of sets F , L and U , one should assign new values to x, and go back to Step 3, where
the subproblem is solved again.

Remark 5.7. It is worth noting that an approximate solution, sufficiently accurate or received
after a specified number of iterations, often only slightly differs in quality from the optimal
one. Therefore, a reasonable stopping criterion, alternative to the optimality conditions (5.14),
may allow for earlier termination of the algorithm and result in a solution close enough to
the optimum.

Since BVLS algorithm is more adjusted to the considered problem, it seems to be a better
choice than the previously mentioned approach (see §5.3). The main computational cost of
a single iteration of the algorithm is associated with solving the subproblem (see Step 3). In
the next subsection, we will focus on finding efficient methods of solving the subproblem.

Finally, we give a block diagram of BVLS algorithm, including the use of alternative
stopping criterion (see Figure 13).

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 66

Figure 13: Block diagram of BVLS algorithm.

5.5 Solving the subproblem

In the previous subsection, we describe how to solve Problem 5.5 using BVLS algorithm. An
essential part of this algorithm is the subproblem, which is solved in each iteration (see §5.4,
Step 3). Let us recall that the subproblem is to minimize E2

x subject to the constraints (5.4)
and (5.15) for z = x. Now, we give two methods of dealing with the subproblem. The first
one, proposed in [43, Appendix], solves a system of normal equations, while the other one,
presented in [46, §4], is based on the properties of dual bases (see §3.2.3 and §3.2.4).

5.5.1 A straightforward method

Here we give formulas for the solution of the subproblem. The method is based on solving a
system of normal equations.

First, we define H := {0, 1, . . . , n}, K := L ∪ U ∪ C, and Qn,m :=
[
Qn,mi,j

]
∈ R(n+1)×(m+1),

where

Qn,mi,j :=

N∑
h=0

Bn
i−1(th)Bm

j−1(th) (i = 1, 2, . . . , n+ 1; j = 1, 2, . . . ,m+ 1).

Further on in this subsection, we use the notation of (5.8) to denote matrices formed by
specified rows and columns. Analogous notation is used to define vectors.

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 67

Now, we write

E2
x(rx) =

N∑
h=0

(bn,thpx − bm,thrx)2 =

N∑
h=0

(
bn,thpx − bFm,thr

F
x − bKm,thr

K
x

)2
=

N∑
h=0

(
bFm,thr

F
x

)2 − 2
N∑
h=0

(
(bn,thpx)

(
bFm,thr

F
x

)
−
(
bKm,thr

K
x

) (
bFm,thr

F
x

))
+

N∑
h=0

(
(bn,thpx)2 +

(
bKm,thr

K
x

)2 − 2 (bn,thpx)
(
bKm,thr

K
x

))
. (5.16)

Next, we omit the constant term (5.16), and solve the subproblem by minimizing

ε
(
rFx
)

:=
(
rFx
)T

QF ,Fm,mr
F
x − 2pTxQ

H,F
n,m rFx + 2

(
rKx
)T

QK,Fm,mr
F
x .

In order to find the minimum of ε, it is sufficient to solve the following system of linear
equations:

0 =
∂ε
(
rFx
)

∂rFx
.

After calculating the partial derivatives, we obtain the system

QF ,Fm,mr
F
x =

(
QH,Fn,m

)T
px −

(
QK,Fm,m

)T
rKx , (5.17)

and the solution is given by

rFx =
(
QF ,Fm,m

)−1
((

QH,Fn,m

)T
px −

(
QK,Fm,m

)T
rKx

)
. (5.18)

Notice that the computation of rFx , by the formula (5.18), requires matrix inversion. How-
ever, this can be avoided by solving the system (5.17) using, e.g., LUP decomposition, which
has better numerical properties. In addition, before the first iteration of BVLS algorithm, it
is recommended to determine the following matrix and vector:

Qm,m,
(
QH,Dn,m

)T
px,

from which – by selecting the appropriate rows or columns – it is possible to obtain matrices
and vectors

QF ,Fm,m, QK,Fm,m,
(
QH,Fn,m

)T
px,

required for the next iterations, without repeating some redundant calculations.

5.5.2 A method based on the properties of dual bases

In §5.5.1, we did not use the fact that consecutive subproblems are quite similar. Now, we
describe the connection between the subproblems and solve them more efficiently than before.

Let Fi, Li and Ui denote sets F , L and U , respectively, before solving the subproblem in
ith iteration (cf. §5.4, Step 1). The ith subproblem can be formulated in the following way.

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 68

Problem 5.8. [ith subproblem]
Find the optimal values of variables (i.e., coordinates of the control points) whose indices are
in set Fi subject to the fixed values of variables whose indices are in set C ∪ Li ∪ Ui. More
precisely, we look for ψ∗i ∈ ΠFi

m such that:

‖ϕi − ψ∗i ‖2 = min
ψi∈Π

Fi
m

‖ϕi − ψi‖2, (5.19)

where

ΠAm := span
{
Bm
j : j ∈ A

}
,

ϕi :=
n∑
h=0

pxhB
n
h −

∑
j∈C

rxjB
m
j −

∑
j∈Li

cxB
m
j −

∑
j∈Ui

CxB
m
j .

Obviously, the above formulation is equivalent to the one given in §5.4, Step 3.
Recall that

L1 = U1 := ∅, F1 := {k + 1, k + 2, . . . ,m− l − 1}

(see §5.4, Step 1). Therefore, in the first iteration, we have

ϕ1 :=
n∑
h=0

pxhB
n
h −

∑
j∈C

rxjB
m
j .

To solve the first subproblem, we start with the construction of the dual basis for the basis{
Bm
k+1, B

m
k+2, . . . , B

m
m−l−1

}
of the space ΠF1

m , using Algorithm 3.7. Then, we use Fact 3.2 to obtain the best least squares
approximation ψ∗1 ∈ ΠF1

m of ϕ1.
Now, let us consider the ith subproblem (i > 1) and its relation with the previous one.

There are two possibilities.
Case 1. One element q was transferred from Li−1 or Ui−1 to Fi−1 (see §5.4, Step 2).

Therefore, we set Fi := Fi−1∪{q} and ((Li := Li−1 \{q} ∧ Ui := Ui−1) or (Ui := Ui−1 \{q} ∧
Li := Li−1)). According to (5.19), for the given ϕi := ϕi−1 + sBm

q (s = cx or s = Cx), we
look for the optimal element ψ∗i ∈ ΠFi

m . Obviously, we have{
Bm
j : j ∈ Fi

}
= {Bm

h : h ∈ Fi−1} ∪
{
Bm
q

}
.

Taking into account that in the previous iteration the dual basis for the basis {Bm
h : h ∈ Fi−1}

of the space Π
Fi−1
m was computed, we use Algorithm 3.6 to obtain the dual basis for the basis

{Bm
j : j ∈ Fi} of the space ΠFi

m . Then, we compute the optimal element using Fact 3.2.
Case 2. At least one element was transferred from Fi−1 to Li−1 or Ui−1 (see §5.4, Step 5).

Apart from very rare cases, exactly one element q was transferred. If the rare case occurred,
then the procedure given below should be applied repeatedly. We set Fi := Fi−1 \ {q} and
((Li := Li−1 ∪ {q} ∧ Ui := Ui−1) or (Ui := Ui−1 ∪ {q} ∧ Li := Li−1)). This time, we have
ϕi := ϕi−1−sBm

q (s = cx or s = Cx) and, according to (5.19), we look for the optimal element
ψ∗i ∈ ΠFi

m . One can see clearly that{
Bm
j : j ∈ Fi

}
= {Bm

h : h ∈ Fi−1} \
{
Bm
q

}
.

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 69

Now, since the dual basis for the basis {Bm
h : h ∈ Fi−1} of the space Π

Fi−1
m was computed

in the previous iteration, we obtain the new dual basis using Algorithm 3.11 (cf. Case 1).
Finally, we use Fact 3.2 to compute the optimal element.

Remark 5.9. Notice that ϕi (i > 1) only slightly differs from ϕi−1 (see Cases 1 and 2).
Similarly as in Corollaries 3.5 and 3.10, one can obtain formulas connecting the coefficients
of the new optimal element ψ∗i and the previous one ψ∗i−1.

5.6 Examples

This subsection provides several examples of application of the discussed methods. The results
have been obtained on a computer with Intel Core i5-3337U 1.8GHz processor and 8GB
of RAM, using MapleTM13 with 16-digit arithmetic. An optimal solution of Problem 5.1 is
computed by solving a system of normal equations, using MapleTM fsolve procedure. An
optimal solution of Problem 5.5 is obtained using BVLS algorithm.

For each example, we give least squares error E (see (5.3)) and maximum error E∞
(see (1.11)). In each case, we use the sequence {th}Nh=0 of equally spaced points for the least
squares distance (5.3), i.e., th := h/N (h = 0, 1, . . . , N). According to the experiments,
different choices of {tk}Nk=0 do not improve the results.

Example 5.10. First, let us apply the algorithms to the Bézier curve “Double loop” of degree
13. The control points are given in [92, Appendix B]. We set k := 0, l := 1, m := 9, N := 18
and

cx := min
0≤i≤n

pxi − 13 = −13, Cx := max
0≤i≤n

pxi + 30 = 101,

cy := min
0≤i≤n

pyi − 20 = −20, Cy := max
0≤i≤n

pyi + 20 = 74.
(5.20)

Figures 14a–14c illustrate the results of degree reduction, i.e., the obtained Bézier curves of
degree 9. Observe that the solution of Problem 5.1 is very precise (see Figure 14a; errors:
E = 4.19e−1 and E∞ = 3.46e−1). However, it has the drawback described in §5.1 (see
Figure 14b), whereas the solution of Problem 5.5 is much more satisfying in this regard (see
Figure 14c; errors: E = 3.28e+0 and E∞ = 1.43e+0). Obviously, because of the additional
restrictions, the errors for the box-constrained approach must be inevitably larger than in the
case of the traditional degree reduction.

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 70

(a)

(b) (c)

Figure 14: The original Bézier curve of degree 13 (blue solid line with blue control points) reduced to the Bézier curve
of degree 9 (red dashed line with red and green control points). Figure (a) shows the original curve and the curve being
the optimal solution of Problem 5.1. Figure (b) illustrates the same curves as (a) but with the resulting control points.
Figure (c) presents the curve being the optimal solution of Problem 5.5 with the resulting control points. The control
points which are constrained by the continuity conditions are green, while the other ones are red and in the case of (c)
bounded by the blue dotted-dashed frame (see (5.5) and (5.20)).

Example 5.11. Let there be given the composite Bézier curve “The Ugly Duckling sketch”
(see Figures 15a and 15b) obtained by joining three Bézier curves of degrees 11, 5 and 11,
respectively. For the control points, see [103, Example 6.2]. We look for Bézier curves of lower
degrees 7, 4 and 7, respectively. Let us set N := 14, 9, 14, respectively; and k = l := 0 for each
Bézier curve. The algorithms are applied independently to every segment of the composite
curve.

Figure 15c shows the plots of the original curves and the corresponding results of the tra-
ditional degree reduction (see Problem 5.1). Once again, we obtain good approximations (er-
rors: E = 7.38e+0, 3.01e+0, 1.99e+0, respectively; and E∞ = 5.28e+0, 1.76e+0, 2.27e+0,
respectively), however, the computed control points are located far away from the plots of
the curves (see Figure 15d). To avoid this issue, we solve Problem 5.5 three times and ob-
tain the curves shown in Figure 16a (errors: E = 2.82e+1, 2.20e+1, 4.76e+1, respectively;
and E∞ = 2.46e+1, 1.39e+1, 2.83e+1, respectively). The rectangular areas can be seen in
Figures 16b–16d.

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 71

(a) (b)

(c) (d)

Figure 15: Figure (a) shows the original composite Bézier curve. Figure (b) presents the same composite Bézier curve
as Figure (a) but with its control points. Figure (c) illustrates the original composite Bézier curve (blue solid line) and
the degree reduced composite Bézier curve (red dashed line), where each segment is the optimal solution of Problem 5.1.
Figure (d) shows the original control points which are blue, and the resulting ones which are red.

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 72

(a)

(b) (c) (d)

Figure 16: The original composite Bézier curve (blue solid line with blue control points) and the degree reduced composite
Bézier curve (red dashed line with red control points), where each segment is the optimal solution of Problem 5.5. See
the rectangular areas (blue dotted-dashed frames).

Example 5.12. Now, we consider the problem of degree reduction of sixteen-segment com-
posite Bézier curve “Octopus” (see Figures 17a and 17b). The control points can be found at
http://www.ii.uni.wroc.pl/~pgo/octopus.txt. We apply the algorithms independently
to every segment of the composite curve. In Table 7, we give the parameters and errors.

As a result of the traditional degree reduction (see Problem 5.1), we obtain the composite
curve with the control points shown in Figure 17c. Clearly, some of the control points are
located far away from the plot of the curve (cf. Figure 17b). Next, let us focus on the
box-constrained degree reduction (see Problem 5.5). For each resulting Bézier curve, the box
constraints were chosen so that the searched control points are placed inside the rectangular
area, bounded by the outermost control points of the original corresponding Bézier curve.
More precisely, we set

cz := min
0≤i≤n

pzi , Cz := max
0≤i≤n

pzi (z = x, y). (5.21)

http://www.ii.uni.wroc.pl/~pgo/octopus.txt

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 73

The resulting composite curve with its control points is illustrated in Figure 17d. This time,
the location of the control points is much more satisfying (cf. Figure 17c). However, because
of the additional restrictions (5.5), the larger errors are unavoidable (see Table 7).

In Table 8, we give the comparison of total running times between the traditional degree
reduction and the box-constrained degree reduction using BVLS algorithm with and without
the use of dual bases. The experiments show that BVLS algorithm combined with the method
of solving the subproblem given in §5.5.2 is approximately two times faster than the one with
the method from §5.5.1. However, the box-constrained degree reduction is still inevitably
slower than the traditional degree reduction, which is much more simple.

Remark 5.13. Note that in [43], Wolfe’s method [99] was also tested. However, according
to [43, Table 1], it is less effective than BVLS algorithm combined with the straightforward
method of solving the subproblem (see §5.5.1). Therefore, it is not worthy of consideration.

Remark 5.14. According to Remark 5.7, BVLS algorithm can be used to obtain an approx-
imate solution of Problem 5.5 (see [43, Example 6.2]). However, thanks to the method given
in §5.5.2, the cost of a single iteration of BVLS algorithm is now lower and such a strategy is
no longer worthwhile.

Input data Problem 5.1 Problem 5.5

Curves n m N k l E E∞ E E∞

O
ct

op
us

Head: left side 9 7 20 2 1 5.07e−4 2.30e−4 5.72e−3 2.32e−3

Head: right side 9 7 20 1 0 9.05e−5 5.12e−5 2.29e−3 8.86e−4

1st arm: part 1 15 9 23 0 0 2.65e−4 1.58e−4 3.53e−3 1.40e−3

1st arm: part 2 17 9 28 0 1 1.59e−3 7.86e−4 1.87e−3 8.92e−4

2nd arm: part 1 14 10 26 1 0 1.62e−4 9.51e−5 1.32e−2 4.41e−3

2nd arm: part 2 14 10 26 0 1 7.35e−5 3.54e−5 4.44e−3 2.44e−3

3rd arm: part 1 13 7 25 1 1 2.50e−3 9.56e−4 2.62e−2 9.03e−3

3rd arm: part 2 11 7 23 1 0 8.73e−4 5.13e−4 4.05e−3 1.62e−3

4th arm 11 7 23 0 0 2.78e−3 1.47e−3 2.61e−2 1.01e−2

5th arm 18 11 23 0 0 1.51e−4 2.91e−4 6.14e−3 2.41e−3

6th arm: part 1 12 7 28 0 0 1.44e−3 6.37e−4 6.97e−3 2.71e−3

6th arm: part 2 17 9 29 0 2 8.48e−4 5.16e−4 1.39e−2 4.26e−3

7th arm: part 1 15 9 29 2 0 9.86e−4 3.60e−4 4.39e−3 1.81e−3

7th arm: part 2 11 7 25 0 2 8.95e−4 3.54e−4 8.95e−4 3.54e−4

8th arm: part 1 16 9 29 2 0 1.21e−3 4.44e−4 1.38e−2 4.66e−3

8th arm: part 2 9 6 18 0 2 2.29e−3 1.05e−3 2.29e−3 1.05e−3

Table 7: The results of degree reduction of the composite Bézier curve “Octopus”.

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 74

Problem 5.1 Problem 5.5

System of normal equations Without the use of dual bases With the use of dual bases

Running times [s] 0.516 2.436 1.249

Table 8: Total running times of degree reduction of the composite Bézier curve “Octopus”. For the parameters, see
Table 7.

(a) (b)

(c) (d)

Figure 17: Figure (a) shows the original composite Bézier curve. Figure (b) presents the same composite Bézier curve
as Figure (a) but with its control points. Figures (c) and (d) illustrate degree reduction of the original composite Bézier
curve (blue solid line) to degree reduced composite Bézier curve (red dashed line with red and green control points),
where each segment is (c) optimal solution of Problem 5.1, (d) optimal solution of Problem 5.5. The control points
which are constrained by the continuity conditions (5.4) are green, while the other ones are red and restricted by (5.5).
Parameters are specified in Table 7.

CHAPTER 5. DEGREE REDUCTION WITH BOX CONSTRAINTS 75

Remark 5.15. Now, let us discuss the issue of setting the rectangular area (5.5). A good
way to start is to choose (5.21). Usually, this simple idea works quite well (see Example 5.12).
In some cases we can even reduce the size of the rectangle, as in Example 5.4, where we set

cx := min
0≤k≤n

pxk = −28, Cx := max
0≤k≤n

pxk = 196,

cy := min
0≤k≤n

pyk = −15, Cy := max
0≤k≤n

pyk − 65 = 135,

and the result is still good enough. However, Example 5.10 shows that sometimes we should
expand the area to get satisfying results (see (5.20)). Clearly, the choice of the restrictions
depends on the considered example. In general, this is a difficult problem to solve. See
Remark 8.8, where one can find more detailed discussion on setting the rectangular area in
the case of merging of planar Bézier curves with box constraints. Both issues are analogous.

Chapter 6

Ck,l-constrained merging of Bézier
curves

In this chapter, we solve efficiently the problem of Ck,l-constrained merging of multiple seg-
ments of Bézier curves (see Problem 1.10). The novel method is based on the idea of using
fast schemes of evaluation of certain connections involving Bernstein and dual Bernstein poly-
nomials (see §3.3.1). The complexity of the algorithm is O(sm2), which is significantly less
than complexity of other merging algorithms. For example, the one given in [72, §3.1] has
the complexity O(sm3). In contrast to some other methods, we avoid matrix inversion. For
a short description of available methods, see §1.6.2. This chapter is based on paper [102].

The outline of the chapter is as follows. In §6.1, which has preliminary character, we
give efficient method of subdivision of Bézier curves. §6.2 brings a complete solution of
Problem 1.10. In addition, it deals with algorithmic implementation of the proposed method.
Some illustrative examples can be found in §6.3.

6.1 Efficient subdivision of Bézier curves

First of all, we have to establish the correspondence between P (1.21) and R (1.22). Taking
into account that P is a composite Bézier curve, we have to subdivide the searched Bézier
curve R as well. Thus, we will need the following restriction of the representation of Bm

j to
a subinterval of the interval [0, 1] (cf. §1.4, pt. 9).

Lemma 6.1. Let 0 = t0 < t1 < . . . < ts = 1 be a partition of the interval [0, 1]. The following
formula holds:

Bm
j (t) =

m∑
h=0

d
(i)
jhB

m
h

(
t− ti−1

∆ti−1

)
, (6.1)

where

d
(i)
jh :=

h∑
v=0

Bm−h
j−v (ti−1)Bh

v (ti).

Proof. The result is obtained in two steps. First, we subdivide the polynomial

Bm
j (t) =

m∑
h=0

δjhB
m
h (t)

76

CHAPTER 6. CK,L-CONSTRAINED MERGING OF BÉZIER CURVES 77

at the point ti to get two forms for the subintervals [0, ti] and [ti, 1]. Next, we subdivide the
form corresponding to [0, ti] at ti−1/ti. We obtain the formula (6.1) with the coefficients d(i)

jh

given by

d
(i)
jh :=

m−h∑
w=0

Bm−h
w (ti−1/ti)B

w+h
j (ti)

(we ignore the fact that the initial terms of the sum vanish as Bw+h
j (ti) = 0 for 0 ≤ w < j−h).

Using the identity

Bn+q
j (x) =

q∑
w=0

Bq
w(x)Bn

j−w(x),

which can be easily proved using some basic properties of Bernstein polynomials (see, e.g.,
[33, §6.10]), and §1.3, pt. 10, it can be seen that

d
(i)
jh =

m−h∑
w=0

Bm−h
w (ti−1/ti)

h∑
v=0

Bh
v (ti)B

w
j−v(ti)

=

h∑
v=0

Bh
v (ti)

m−h∑
w=0

Bm−h
w (ti−1/ti)B

w
j−v(ti)

=
h∑
v=0

Bh
v (ti)B

m−h
j−v (ti−1).

Remark 6.2. Using Fact 3.1, we note that the formula (6.1) is equivalent to

Bm
j (u∆ti−1 + ti−1) =

m∑
h=0

d
(i)
jhB

m
h (u) (u ∈ [0, 1]), (6.2)

where

d
(i)
jh =

∫ 1

0
Bm
j (u∆ti−1 + ti−1)Dm

h (u) du (6.3)

with Dm
h (u) ≡ Dm

h (u; 0, 0) being defined in §3.3

Lemma 6.3. For i = 1, 2, . . . s, the coefficients d(i)
jh satisfy the following recurrence equation:

∆ti−1

[
(m− j + 1)d

(i)
j−1,h + (2j −m)d

(i)
jh − (j + 1)d

(i)
j+1,h

]
= (m− h)d

(i)
j,h+1 + (2h−m)d

(i)
jh − hd

(i)
j,h−1

(1 ≤ j ≤ m− 1; 0 ≤ h ≤ m).

Proof. We differentiate both sides of the equation (6.2) with respect to u, and make use of
the identity

d
du
Bm
j (u) = (m− j + 1)Bm

j−1(u) + (2j −m)Bm
j (u)− (j + 1)Bm

j+1(u).

Equating the Bézier coefficients gives the result.

CHAPTER 6. CK,L-CONSTRAINED MERGING OF BÉZIER CURVES 78

Lemma 6.3 yields the following algorithm of computing the coefficients d(i)
jh (i = 1, 2, . . . , s;

j, h = 0, 1, . . . ,m).

Algorithm 6.4. [Computing the coefficients d(i)
jh]

Input: m, s, 0 = t0 < t1 < . . . < ts = 1

Output: table of the coefficients d(i)
jh (i = 1, 2, . . . , s; j, h = 0, 1, . . . ,m)

Step 1. For i = 1, 2, . . . , s, compute

d
(i)
−1,0 := 0, d

(i)
00 := (1− ti−1)m,

d
(i)
−1,h := 0, d

(i)
0h :=

1− ti
1− ti−1

d
(i)
0,h−1 (h = 1, 2, . . . ,m).

Step 2. For i = 1, 2, . . . , s; j = 0, 1, . . . ,m− 1; h = 0, 1, . . . ,m, compute

d
(i)
j+1,h :=(j + 1)−1

{
(∆ti−1)−1

[
hd

(i)
j,h−1 − (2h−m)d

(i)
jh − (m− h)d

(i)
j,h+1

]
+(m− j + 1)d

(i)
j−1,h + (2j −m)d

(i)
jh

}
.

Observe that the complexity of Algorithm 6.4 is O(sm2).

6.2 Solution and algorithm

Recall that, in §2.1, we have related the Ck,l continuity conditions (1.24) with the control
points of the curves P 1, P s and R. Consequently, r0, r1, . . . , rk and rm, rm−1, . . . , rm−l can
be computed using the formulas (2.5) and (2.6), respectively. The remaining control points
rk+1, rk+2, . . . , rm−l−1 are to be determined so that the L2-error (1.23) is minimized. Taking
into account that Problem 1.10 can be solved in a componentwise way, we can limit our-
selves to the case of d = 1. Hence, it is sufficient to deal with the following problem (cf.
Problem 1.10).

Problem 6.5. [Merging of Bézier curves with prescribed boundary control points]
Let 0 = t0 < t1 < . . . < ts = 1 be a partition of the interval [0, 1]. Given a piecewise
polynomial function P with segments P 1, P 2, . . . , P s such that

P (t) = P i(t) :=

ni∑
j=0

pij B
ni
j

(
t− ti−1

∆ti−1

)
(t ∈ [ti−1, ti]; i = 1, 2, . . . , s), (6.4)

we look for a polynomial R of degree m,

R(t) =

m∑
j=0

rj B
m
j (t) (t ∈ [0, 1]), (6.5)

having the prescribed coefficients r0, r1, . . . , rk and rm, rm−1, . . . , rm−l, which gives the mini-
mum value of the L2-error

‖P −R‖L2 :=
√
〈P −R,P −R〉L (6.6)

(cf. (3.16)).

CHAPTER 6. CK,L-CONSTRAINED MERGING OF BÉZIER CURVES 79

The following theorem deals with Problem 6.5.

Theorem 6.6. Let there be given the coefficients pij (i = 1, 2, . . . , s; j = 0, 1, . . . , ni) of
the polynomials (6.4), and the coefficients rj (j = 0, 1, . . . , k,m − l,m − l + 1, . . . ,m) of
the polynomial (6.5). The inner coefficients rj (j = k + 1, k + 2, . . . ,m − l − 1) of the
polynomial (6.5) minimizing the L2-error (6.6) are given by

rj =
m−l−1∑
h=k+1

r̂hchj(m, k, l) (j = k + 1, k + 2, . . . ,m− l − 1), (6.7)

where

r̂h :=
s∑
i=1

∆ti−1

m∑
v=0

p̂ivd
(i)
hv −

1

2m+ 1

(
m

h

)(k∑
v=0

+

m∑
v=m−l

)(
2m

h+ v

)−1(m
v

)
rv, (6.8)

p̂iv :=
1

m+ ni + 1

(
m

v

) ni∑
q=0

(
m+ ni
q + v

)−1(ni
q

)
piq (6.9)

with chj(m, k, l) and d(i)
jh being introduced in §3.3.1 and §6.1, respectively.

Proof. First, using Lemma 3.13, we represent each segment P i of the original piecewise poly-
nomial P in the dual Bernstein basis of degree m,

P i(t) =
m∑
v=0

p̂ivD
m
v

(
t− ti−1

∆ti−1

)
with p̂iv being defined in (6.9).

Next, we note that
‖P −R‖2L2

= ‖W − S‖2L2
,

where

W := P −

(
k∑

h=0

+

m∑
h=m−l

)
rhB

m
h , S :=

m−l−1∑
j=k+1

rjB
m
j .

Now, the goal is to obtain the coefficients r̂j of the searched polynomial in the constrained
dual Bernstein form,

S =
m−l−1∑
j=k+1

r̂jD
(m,k,l)
j

(cf. §3.3). Then, the Bézier coefficients rj of S can be easily computed using (6.7) (cf.
Lemma 3.14). Using Fact 3.2 and (6.3), we obtain

r̂j =
〈
W,Bm

j

〉
L

=

∫ 1

0
W (t)Bm

j (t) dt

=

s∑
i=1

m∑
h=0

p̂ih

∫ ti

ti−1

Dm
h

(
t− ti−1

∆ti−1

)
Bm
j (t) dt

−

(
k∑

h=0

+
m∑

h=m−l

)
rh

∫ 1

0
Bm
h (t)Bm

j (t) dt

CHAPTER 6. CK,L-CONSTRAINED MERGING OF BÉZIER CURVES 80

=

s∑
i=1

m∑
h=0

p̂ih∆ti−1

∫ 1

0
Dm
h (u)Bm

j (u∆ti−1 + ti−1) du

−

(
k∑

h=0

+

m∑
h=m−l

)
rh

1

2m+ 1

(
m

h

)(
m

j

)(
2m

h+ j

)−1

=
s∑
i=1

∆ti−1

m∑
h=0

p̂ihd
(i)
jh −

1

2m+ 1

(
m

j

)(k∑
h=0

+
m∑

h=m−l

)
rh

(
m

h

)(
2m

h+ j

)−1

(j = k + 1, k + 2, . . . ,m− l − 1).

This completes the proof.

Now, let the composite curve P and the merged curve R be the curves in Rd (d ≥ 1).
Let pij = (pij1, p

i
j2, . . . , p

i
jd) (i = 1, 2, . . . , s; j = 0, 1, . . . , ni), and rj = (rj1, rj2, . . . , rjd) (j =

0, 1, . . . ,m) be the control points of P and R, respectively. For i = 1, 2, . . . , s; h = 1, 2, . . . , d,
we define vectors

πih :=
[
pi0h, p

i
1h, . . . , p

i
ni,h

]
∈ Rni+1, (6.10)

%ih :=
[
%i0h, %

i
1h, . . . , %

i
mh

]
∈ Rm+1, (6.11)

where

%izh :=
m∑
j=0

rjhd
(i)
jz (z = 0, 1, . . . ,m). (6.12)

It is easy to see that the L2-distance between P and R can be written in the following way:

E2 :=‖P −R‖L2

=

√√√√ s∑
i=1

∆ti−1

d∑
h=1

[
Jni,ni(π

i
h, π

i
h)− 2Jni,m(πih, %

i
h) + Jmm(%ih, %

i
h)
]
, (6.13)

where

JNM (u, v) :=
N∑
j=0

uj

M∑
z=0

a
(N,M)
jz vz (6.14)

with u = [u0, u1, . . . , uN] and v = [v0, v1, . . . , vM]. Here we use the notation of (3.18).

Remark 6.7. Note that in contrast to Problem 1.9, we are dealing with the L2-error (6.13)
instead of the weighted L2-error (1.13). The weight function would significantly complicate
the problem of merging and the possible improvement of results would be negligible.

Now, we present the algorithm of solving Problem 1.10.

Algorithm 6.8. [Ck,l-constrained merging of Bézier curves]
Input: ni (i = 1, 2, . . . , s) – degrees of the curves (1.21);

pij (j = 0, 1, . . . , ni; i = 1, 2, . . . , s) – control points of the curves (1.21);
m – degree of the curve (1.22);
k, l – orders of the parametric continuity (see (1.24));

CHAPTER 6. CK,L-CONSTRAINED MERGING OF BÉZIER CURVES 81

0 = t0 < t1 < . . . < ts = 1 – partition of the interval [0, 1]

Assumptions: m ≥ maxi ni; k ≤ n1; l ≤ ns; k, l ≥ −1; k + l < m− 1

Output: control points of the Ck,l-constrained merged Bézier curve, and error E2

Step 1. Compute r0, r1, . . . , rk by (2.5).

Step 2. Compute rm, rm−1, . . . , rm−l by (2.6).

Step 3. Compute p̂ij (i = 1, 2, . . . , s; j = 0, 1, . . . ,m) by (6.9).

Step 4. Compute d(i)
jh (i = 1, 2, . . . , s; j, h = 0, 1, . . . ,m) using Algorithm 6.4.

Step 5. Compute r̂j (j = k + 1, k + 2, . . . ,m− l − 1) by (6.8).

Step 6. Compute cij(m, k, l) (i, j = k + 1, k + 2, . . . ,m− l − 1) using Algorithm 3.15.

Step 7. Compute rj (j = k + 1, k + 2, . . . ,m− l − 1) by (6.7).

Step 8. Compute %izh (i = 1, 2, . . . , s; z = 0, 1, . . . ,m; h = 1, 2, . . . , d) by (6.12).

Step 9. Compute E2 by (6.13).

Step 10. Return r0, r1, . . . , rm, and E2.

Notice that the complexity of Algorithm 6.8 is O(sm2).

6.3 Examples

In this subsection, we give several examples of application of Algorithm 6.8. For each example,
we give L2-error E2 (6.13) as well as maximum error E∞ (1.11). The results have been
obtained on a computer with Intel Core i5-3337U 1.8GHz processor and 8GB of RAM, using
MapleTM13 with 32-digit arithmetic.

Generalizing the approach of [71, (6.1)], partition of the interval [t0, ts] = [0, 1] is deter-
mined according to the lengths of segments P i,

tj := Lj/Ls (j = 1, 2, . . . , s− 1), (6.15)

where

Lq :=

q∑
i=1

∫ 1

0

∥∥∥∥∥ d

dt

ni∑
h=0

pihB
ni
h (t)

∥∥∥∥∥ dt.

Integrals are evaluated using the MapleTM13 function int with the option numeric.

Example 6.9. First, we recall the composite Bézier curve “D”. For the control points, see
Example 1.3. The formula (6.15) implies the following partition: t0 = 0, t1

.
= 0.32, t2

.
=

0.56, t3 = 1. The results of Ck,l-constrained merging are presented in Table 9. The original
composite Bézier curve and two of the merged curves are plotted in Figures 18a and 18b.

CHAPTER 6. CK,L-CONSTRAINED MERGING OF BÉZIER CURVES 82

(a) (b)

Figure 18: Ck,l-constrained merging of three segments of the composite Bézier curve. The original composite curve
(blue solid line) and the merged curve (red dashed line) with parameters: (a) m = 11, k = l = 1; (b) m = 13, k = l = 1.

Parameters Errors

m k l E2 E∞

11 0 0 1.45e−2 3.09e−2
1 1 1.67e−2 3.35e−2
2 2 2.12e−2 4.22e−2

12 0 0 7.93e−3 2.00e−2
1 1 9.10e−3 2.27e−2
2 2 1.18e−2 2.92e−2

13 0 0 7.78e−3 2.06e−2
1 1 9.05e−3 2.30e−2
2 2 1.17e−2 2.75e−2

Table 9: L2-errors and maximum errors of the Ck,l-constrained merging of three segments of the composite Bézier curve
“D”.

Example 6.10. Now, we use Algorithm 6.8 to merge the composite Bézier curve “Amper-
sand”, with three 5th degree Bézier segments, defined by the control points {(1.09, 0.03),
(1.02, 0.21), (0.6, 0.75), (0.5, 1.11), (0.85, 1.12), (0.93, 1.03)}, {(0.93, 1.03), (1.01, 0.96), (1.02,
0.76), (0.8, 0.65), (0.62, 0.38), (0.61, 0.23)}, and {(0.61, 0.23), (0.59, 0.1), (0.67, 0.02), (0.91,
−0.05), (1.12, 0.05), (1.08, 0.22)}, respectively (cf. Example 5.4). According to (6.15), we
have t0 = 0, t1

.
= 0.45, t2

.
= 0.76, t3 = 1. The results are given in Table 10. Moreover, we

give the running times required to compute the resulting control points in the case of Algo-
rithm 6.8 and the one from [72, §3.1]. Clearly, Algorithm 6.8 is faster. Figures 19a and 19b

CHAPTER 6. CK,L-CONSTRAINED MERGING OF BÉZIER CURVES 83

illustrate the results for two representative cases. This example shows that merging may
result in data compression.

(a) (b)

Figure 19: Ck,l-constrained merging of three segments of the composite Bézier curve. The original composite curve
(blue solid line) and the merged curve (red dashed line) with parameters: (a) m = 8, k = 2, l = 1; (b) m = 12, k = 2,
l = 1.

Parameters Errors Running times [ms]

m k l E2 E∞ Algorithm 6.8 Lu [72, §3.1]

8 1 0 4.82e−3 8.81e−3 10 59
1 1 5.91e−3 1.13e−2 11 60
2 1 1.06e−2 1.81e−2 10 55

10 1 0 1.71e−3 5.47e−3 16 91
1 1 1.74e−3 5.35e−3 15 84
2 1 1.83e−3 5.35e−3 15 76

12 1 0 1.66e−3 5.55e−3 22 127
1 1 1.66e−3 5.55e−3 22 125
2 1 1.69e−3 5.59e−3 19 111

Table 10: L2-errors, maximum errors and running times of the Ck,l-constrained merging of three segments of the
composite Bézier curve “Ampersand”.

CHAPTER 6. CK,L-CONSTRAINED MERGING OF BÉZIER CURVES 84

Example 6.11. The curve “Penguin” is formed by two composite Bézier curves. The left
curve has four cubic segments with the control points {(0.31, 0.23), (0.35, 0.19), (0.39, 0.23),
(0.37, 0.26)}, {(0.37, 0.26), (0.21, 0.54), (0.53, 0.77), (0.21, 0.76)}, {(0.21, 0.76), (0.1, 0.76), (0.5,
0.88), (0.42, 0.79)}, and {(0.42, 0.79), (0.26, 0.76), (0.23, 0.92), (0.34, 0.94)}, respectively. The
right one is composed of three cubic segments having the control points {(0.34, 0.94), (0.74,
0.99), (0.67, 0.19), (0.56, 0.21)}, {(0.56, 0.21), (0.19, 0.32), (0.62, 1.05), (0.56, 0.61)}, and {(0.56,
0.61), (0.5, 0.24), (0.41, 0.41), (0.5, 0.64)}, respectively. The formula (6.15) gives t0 = 0, t1

.
=

0.08, t2
.
= 0.55, t3

.
= 0.78, t4 = 1 for the left curve, and t0 = 0, t1

.
= 0.42, t2

.
= 0.78, t3 = 1

for the right one. The results of separate merging of segments of both curves can be seen in
Table 11. Two selected cases are shown in Figures 20a and 20b.

(a) (b)

Figure 20: Separate Ck,l-constrained merging of segments of two composite Bézier curves. The original composite curves
(blue solid line) and the merged curves (red dashed line). (a) Left curve: m = 12, k = 0, l = 1; right curve: m = 10,
k = 1, l = 0. (b) Left curve: m = 14, k = l = 1; right curve: m = 13, k = l = 1.

CHAPTER 6. CK,L-CONSTRAINED MERGING OF BÉZIER CURVES 85

Left curve Right curve

m k l E2 E∞ m k l E2 E∞

12 0 0 7.45e−3 1.90e−2 10 0 0 1.28e−2 3.51e−2
0 1 9.33e−3 2.08e−2 1 0 1.33e−2 3.67e−2
1 0 7.51e−3 1.84e−2 0 1 1.37e−2 3.49e−2
1 1 9.36e−3 2.12e−2 1 1 1.45e−2 3.69e−2

13 0 0 6.68e−3 1.45e−2 12 0 0 9.01e−3 3.00e−2
0 1 7.15e−3 1.57e−2 1 0 9.46e−3 3.15e−2
1 0 7.16e−3 1.50e−2 0 1 9.49e−3 2.99e−2
1 1 7.83e−3 1.66e−2 1 1 9.78e−3 3.13e−2

14 0 0 4.39e−3 1.19e−2 13 0 0 8.65e−3 2.83e−2
0 1 4.52e−3 1.21e−2 1 0 8.71e−3 2.82e−2
1 0 4.49e−3 1.19e−2 0 1 9.47e−3 2.95e−2
1 1 4.58e−3 1.21e−2 1 1 9.62e−3 2.95e−2

Table 11: L2-errors and maximum errors of separate Ck,l-constrained merging of segments of two composite Bézier
curves “Penguin”.

Chapter 7

Gk,l-constrained merging of Bézier
curves

In this chapter, we generalize the result from Chapter 6 to solve efficiently the problem of Gk,l-
constrained merging of multiple segments of Bézier curves (see Problem 1.11). As in the case
of the Gk,l-constrained degree reduction (see Problem 1.9), we are dealing with the problem
in two-phases. The first phase is to compute optimal values of the continuity parameters {λi}
and {µj} (see §2.2). Two different approaches, with and without the simplifying assumptions
(see §2.3), are presented in §7.1. The second phase, where we compute the searched control
points, is based on Theorem 6.6. The algorithms are given in §7.2. According to some
numerical experiments, the approximation is much more accurate than that of Algorithm 6.8
(see §7.3). The material presented in this chapter is the author’s independent work and it
has not been published before.

First of all, notice that the formulas (2.17)–(2.22) with fixed parameters {λi} and {µj}
constitute constraints of the form demanded in Theorem 6.6. Consequently, the inner con-
trol points rk+1, rk+2, . . . , rm−l−1 of the curve (1.26) depend on these parameters. Because
of this dependency, the result cannot be obtained in a componentwise way. Therefore, a
generalization of Theorem 6.6 for any natural d should be used. This modification is very
straightforward, thus it is omitted in this thesis. In the next subsection, we focus on comput-
ing the continuity parameters {λi} and {µj}.

7.1 Computing the continuity parameters

Analogously as in §4.2, optimum values of the parameters {λi} and {µj} can be obtained by
minimizing the error function

E ≡ E(λ1, λ2, . . . , λk, µ1, µ2, . . . , µl) :=

∫ 1

0
‖P (t)−R(t)‖2 dt

=

s∑
i=1

∆ti−1

d∑
h=1

[
Jni,ni(π

i
h, π

i
h)− 2Jni,m(πih, %

i
h) + Jmm(%ih, %

i
h)
]
, (7.1)

where JNM , πih, %ih are given by (6.14), (6.10), (6.11), respectively. The function depends on
these parameters via formulas (2.17)–(2.22) and (6.7). For a minimum of the function, it is

86

CHAPTER 7. GK,L-CONSTRAINED MERGING OF BÉZIER CURVES 87

necessary that its derivatives with respect to the parameters are zero. As a result, we obtain
the system

∂E

∂λu
=

s∑
i=1

∆ti−1

d∑
h=1

[
Jmm

(
%ih, σ

(i,u)
h

)
− Jni,m

(
πih, σ

(i,u)
h

)]
= 0 (u = 1, 2, . . . , k),

∂E

∂µv
=

s∑
i=1

∆ti−1

d∑
h=1

[
Jmm

(
%ih, τ

(i,v)
h

)
− Jni,m

(
πih, τ

(i,v)
h

)]
= 0 (v = 1, 2, . . . , l),

(7.2)

where

σ
(i,u)
h :=

[
σ

(i,u)
0h , σ

(i,u)
1h , . . . , σ

(i,u)
mh

]
∈ Rm+1,

τ
(i,u)
h :=

[
τ

(i,v)
0h , τ

(i,v)
1h , . . . , τ

(i,v)
mh

]
∈ Rm+1

for

σ
(i,u)
zh :=

m−l−1∑
j=u

d
(i)
jz

∂rjh
∂λu

, τ
(i,v)
zh :=

m−v∑
j=k+1

d
(i)
jz

∂rjh
∂µv

(z = 0, 1, . . . ,m)

with d
(i)
jz being introduced in §6.1.

Proceeding as in §4.2, we compute the partial derivatives of hth coordinates of the control
points (2.17)–(2.22). In the case of k = l = 3, we obtain

∂rih

∂λ1
=

n1
m
t−1
1 ∆p10h (i = 1),

2n1
m
t−1
1 ∆p10h + 2λ1

(n1−1)2
(m−1)2

t−2
1 ∆2p10h (i = 2),

3n1
m
t−1
1 ∆p10h +

[
2λ1 + 1

m−2
λ2

]
3
(n1−1)2
(m−1)2

t−2
1 ∆2p10h + 3λ21

(n1−2)3
(m−2)3

t−3
1 ∆3p10h (i = 3),

0 (i = 0; m− 3 ≤ i ≤ m),

(7.3)

∂rih

∂λ2
=

n1

(m−1)2
t−1
1 ∆p10h (i = 2),

3 n1
(m−1)2

t−1
1 ∆p10h + 3λ1

(n1−1)2
(m−2)3

t−2
1 ∆2p10h (i = 3),

0 (i = 0, 1; m− 3 ≤ i ≤ m),

(7.4)

∂rih

∂λ3
=

n1

(m−2)3
t−1
1 ∆p10h (i = 3),

0 (i = 0, 1, 2; m− 3 ≤ i ≤ m),
(7.5)

∂rih

∂µ1
=

−ns
m

(1− ts−1)−1∆psns−1,h (i = m− 1),

−2ns
m

(1− ts−1)−1∆psns−1,h + 2µ1
(ns−1)2
(m−1)2

(1− ts−1)−2∆2psns−2,h (i = m− 2),

−3ns
m

(1− ts−1)−1∆psns−1,h +
[
2µ1 − 1

m−2
µ2

]
3
(ns−1)2
(m−1)2

(1− ts−1)−2∆2psns−2,h

−3µ21
(ns−2)3
(m−2)3

(1− ts−1)−3∆3psns−3,h (i = m− 3),

0 (0 ≤ i ≤ 3; i = m),

(7.6)

∂rih

∂µ2
=

ns

(m−1)2
(1− ts−1)−1∆psns−1,h (i = m− 2),

3 ns
(m−1)2

(1− ts−1)−1∆psns−1,h − 3µ1
(ns−1)2
(m−2)3

(1− ts−1)−2∆2psns−2,h (i = m− 3),

0 (0 ≤ i ≤ 3; i = m− 1,m),

(7.7)

CHAPTER 7. GK,L-CONSTRAINED MERGING OF BÉZIER CURVES 88

∂rih

∂µ3
=

{ − ns
(m−2)3

(1− ts−1)−1∆psns−1,h (i = m− 3),

0 (0 ≤ i ≤ 3; m− 2 ≤ i ≤ m).
(7.8)

(cf. (4.11)–(4.16)).
Notice that the partial derivatives of hth coordinates of the inner control points (6.7) depend
on (7.3)–(7.8) in the following way:

∂rih
∂λu

= − 1

2m+ 1

m−l−1∑
j=k+1

(
m

j

)
cji

k∑
g=u

(
2m

j + g

)−1(m
g

)
∂rgh
∂λu

, (7.9)

∂rih
∂µv

= − 1

2m+ 1

m−l−1∑
j=k+1

(
m

j

)
cji

m−v∑
g=m−l

(
2m

j + g

)−1(m
g

)
∂rgh
∂µv

(7.10)

with cji being introduced in Lemma 3.14. When k, l ≤ 3, we compute ∂rih
∂λu

, ∂rih∂µv
by (7.9), (7.10)

if k < i < m − l, and by (7.3)–(7.8) otherwise. Finally, we put the expressions (7.3)–(7.10)
into the equations of the system (7.2).

As in the case of the analogical degree reduction problem, the obtained system in nonlinear
for k ≥ 2 or l ≥ 2. Moreover, we must guarantee that λ1, µ1 > 0, which results in the same
directions of tangent vectors at the endpoints of the curves (1.25) and (1.26) (cf. Remark 4.3).
Thus, to solve Problem 1.11 in its most general form, we must solve the quadratic or nonlinear
programming problem of minimizing (7.1) subject to

λ1 ≥ z0, µ1 ≥ z1, (7.11)

where z0 and z1 are prescribed positive lower bounds. The idea behind this approach is
basically the same as in §4.2.1. Hence, we omit further explanation. For the algorithm,
see §7.2.1.

Another approach, which works relatively well for both degree reduction and merging, is
the Cp,q/Gk,l simplification (see §2.3). In the cases of k = l = 2 and k = l = 3, this idea was
first presented in [69, 71]. As in §4.2.2, it can be generalized for any k and l not exceeding
3. Since the rules of simplification are the same, we assume that no further explanation is
required. An outline of the algorithm is given in §7.2.2.

7.2 Algorithms

In this subsection, we provide some details of algorithmic implementation of the result given
in Theorem 6.6 combined with the methods of computing the continuity parameters {λi} and
{µj} (see §7.1).

7.2.1 Gk,l-constrained merging algorithm

Now, we give two-phase algorithm of solving Problem 1.11 in its most general form. See
Algorithm 7.1 (cf. Algorithm 4.9).

During Phase A, the task is to minimize the error function (7.1) subject to the con-
straints (7.11). After we build the error function, we solve the constrained quadratic or non-
linear programming problem and obtain optimal values for the continuity parameters {λi}
and {µj}. Phase B of the algorithm is to compute the control points of the curve (1.26). Using

CHAPTER 7. GK,L-CONSTRAINED MERGING OF BÉZIER CURVES 89

Theorem 6.6, we determine them with the complexity O(sm2), which should be compared to
the complexity O(sm3) of other known methods (see, e.g., [69, 71, 72, 75]). Moreover, in con-
trast to those methods, Algorithm 7.1 works for any k, l such that −1 ≤ k, l ≤ 3. According
to the author’s knowledge, this is the fastest and the most general algorithm available.

Notice that when k, l < 1, Problem 1.11 is the same as Problem 1.10. Therefore, to obtain
a proper result, one can just execute Algorithm 6.8.

Algorithm 7.1. [Gk,l-constrained merging of Bézier curves]
Input: ni (i = 1, 2, . . . , s) – degrees of the curves (1.25);

pij (j = 0, 1, . . . , ni; i = 1, 2, . . . , s) – control points of the curves (1.25);
m – degree of the curve (1.26);
k, l – orders of the geometric continuity (see (1.27));
0 = t0 < t1 < . . . < ts = 1 – partition of the interval [0, 1];
z0, z1 – lower bounds for the parameters λ1 and µ1, respectively (see (7.11))

Assumptions: m ≥ maxi ni; z0, z1 > 0; k ≤ n1; l ≤ ns; −1 ≤ k, l ≤ 3; k + l < m− 1

Output: control points of the Gk,l-constrained merged Bézier curve

Phase A

Step 1. Check if the considered case can be solved using Algorithm 6.8

If (k, l < 1) then execute Algorithm 6.8, and return r0, r1, . . . , rm.

Step 2. Compute cij(m, k, l) (i, j = k + 1, k + 2, . . . ,m− l − 1) using Algorithm 3.15.

Step 3. Compute d(i)
jh (i = 1, 2, . . . , s; j, h = 0, 1, . . . ,m) using Algorithm 6.4.

Step 4. Compute E(λ1, λ2, . . . , λk, µ1, µ2, . . . , µl) by (7.1).

Step 5. Determine set c of constraints

(i) c := {λ1 ≥ z0, µ1 ≥ z1};
(ii) If (k < 1) then c := c \ {λ1 ≥ z0};

(iii) If (l < 1) then c := c \ {µ1 ≥ z1}.

Step 6.

If (k > 1 or l > 1) then

• obtain λ1, λ2, . . . , λk, and µ1, µ2, . . . , µl by solving the nonlinear programming
problem of minimizing the error (7.1) subject to the constraints c;

else

• obtain λ1, λ2, . . . , λk, and µ1, µ2, . . . , µl by solving the quadratic programming
problem of minimizing the error (7.1) subject to the constraints c.

Phase B

Step 7. Compute r0, r1, . . . , rk by (2.17)–(2.19).

Step 8. Compute rm, rm−1, . . . , rm−l by (2.20)–(2.22).

CHAPTER 7. GK,L-CONSTRAINED MERGING OF BÉZIER CURVES 90

Step 9. Compute p̂ij (i = 1, 2, . . . , s; j = 0, 1, . . . ,m) by (6.9).

Step 10. Compute r̂j (j = k + 1, k + 2, . . . ,m− l − 1) by (6.8).

Step 11. Compute rj (j = k + 1, k + 2, . . . ,m− l − 1) by (6.7).

Step 12. Return r0, r1, . . . , rm.

7.2.2 Outline of the Cp,q/Gk,l-constrained merging algorithm

Now, we give the outline of two-phase algorithm of Cp,q/Gk,l-constrained merging of Bézier
curves. The method is analogical to that of Cp,q/Gk,l-constrained degree reduction of Bézier
curves (see Algorithm 4.8). Because of this similarity, we omit a detailed description of the
full algorithm. Moreover, it is also possible to derive explicit formulas for the continuity
parameters {λi} and {µj} in some of the selected cases (cf. Remark 4.4 and §4.3). Therefore,
one could give an algorithm which would be similar to Algorithm 4.7. However, due to
extensive mathematical details associated with this approach, it is omitted in the thesis.

The simplifying assumptions that λ1 := 1 when k > 1, and µ1 := 1 when l > 1, make
the system (7.2) linear. Consequently, in Phase A, the algorithm solves this linear system to
compute the continuity parameters {λi} and {µj}. Note that when k = 1 or l = 1, a solution
of the system may not satisfy λ1 > 0 or µ1 > 0, respectively. In such cases, we must deal
with the quadratic programming problem subject to the conditions (7.11). Phase B is the
same as for Algorithm 7.1.

Apart from very rare cases which force the algorithm to solve the quadratic programming
problem, the computational cost is lower than that of Algorithm 7.1. On the other hand,
because of the simplification, the results are less accurate (see §7.3).

7.3 Examples

In this subsection, we show the effectiveness of the methods. Taking into account the different
types of continuity constraints, we compare the following cases:

(i) Ck,l-constrained case, solved using Algorithm 6.8;

(ii) Cp,q/Gk,l-constrained case, solved using the algorithm described in §7.2.2;

(iii) Gk,l-constrained case, solved using Algorithm 7.1.

In each case, we give L2-error E2 :=
√
E (see (7.1)) and maximum error E∞ (1.11).

The results have been obtained in MapleTM13 using 32-digit arithmetic. As in §4.5, we use
MapleTM fsolve procedure, in the Cp,q/Gk,l-constrained case, to solve the system of linear
equations, and QPSolve, NLPSolve procedures, to deal with the quadratic and nonlinear
programming problems, respectively. Initial points for both procedures correspond to the
values of continuity parameters in the Ck,l-constrained case (see Remark 2.3).

Example 7.2. First, we recall the composite Bézier curve “Ampersand”. For the control
points and the partition of the unit interval, see Example 6.10. We look for Bézier curves
of degrees 7 and 8 satisfying the different types of continuity constraints. For the results,
see Table 12 and Figure 21. Clearly, the Ck,l constraints lead to by far the worst results,

CHAPTER 7. GK,L-CONSTRAINED MERGING OF BÉZIER CURVES 91

which are unacceptable from a practical point of view. The difference between the Cp,q/Gk,l-
constrained and Gk,l-constrained cases is noticeable and becomes significant for larger values
of k and l.

(a) (b)

Figure 21: Merging of three segments of the composite Bézier curve. The original composite curve (blue solid line)
and the merged curves with Ck,l (black dotted line), Cp,q/Gk,l (green dash-dotted line) and Gk,l (red dashed line)
continuity constraints; parameters: (a) m = 8, k = 3, l = 2; (b) m = 8, k = l = 3.

Parameters Ck,l solution Cp,q/Gk,l solution Gk,l solution

m k l E2 E∞ E2 E∞ E2 E∞

7 2 2 6.30e−2 1.18e−1 5.29e−2 9.92e−2 1.83e−2 3.83e−2

7 2 3 2.08e−1 3.54e−1 5.36e−2 1.01e−1 3.02e−2 4.87e−2

7 3 2 9.10e−2 1.85e−1 5.62e−2 1.04e−1 1.90e−2 4.12e−2

8 2 2 1.59e−2 2.88e−2 1.39e−2 2.48e−2 7.69e−3 1.34e−2

8 2 3 2.01e−2 4.02e−2 1.40e−2 2.44e−2 1.05e−2 2.17e−2

8 3 2 3.86e−2 6.42e−2 1.70e−2 2.98e−2 8.48e−3 1.32e−2

8 3 3 7.21e−2 1.33e−1 1.87e−2 3.23e−2 1.35e−2 2.55e−2

Table 12: L2-errors and maximum errors of constrained merging of three segments of the composite Bézier curve
“Ampersand” with the different types of continuity constraints.

CHAPTER 7. GK,L-CONSTRAINED MERGING OF BÉZIER CURVES 92

Example 7.3. Secondly, we present the composite Bézier curve “H”, formed by four cu-
bic segments which are defined by the control points {(0.39, 1.24), (0.52, 1.08), (0.57, 1.52),
(0.6, 1.02)}, {(0.6, 1.02), (0.63, 0.7), (0.49, 0.24), (0.38, 0.6)}, {(0.38, 0.6), (0.33, 0.84), (1.38, 1),
(1.13, 1.25)} and {(1.13, 1.25), (0.8, 1.5), (1.01, 0.15), (1.12, 0.55)}, respectively. According to
(6.15), we have t0 = 0, t1

.
= 0.14, t2

.
= 0.36, t3

.
= 0.69, t4 = 1. As we consider the

different types of continuity constraints, it can be seen that, once again, the result of the
Ck,l-constrained case is unsatisfactory. See Figure 22.

Figure 22: Merging of four segments of the composite Bézier curve. The original composite curve (blue solid line) and
the merged curves of degree 11 with C2,3 (black dotted line; errors: E2 = 2.94e−2 and E∞ = 7.90e−2), C1,1/G2,3

(green dash-dotted line; errors: E2 = 1.97e−2 and E∞ = 5.54e−2) and G2,3 (red dashed line; errors: E2 = 1.75e−2
and E∞ = 5.80e−2) continuity constraints.

Chapter 8

Merging of planar Bézier curves
with box constraints

In this chapter, we propose a new approach to the problem of Ck,l-constrained merging of
planar Bézier curves with respect to the L2-norm. Recall that in Chapter 5, we observe
that as a result of the traditional degree reduction of planar Bézier curves (see Problem 5.1),
computed control points can be located far away from the plot of the curve. We also explain
why this is a serious defect (see §5.1). Next, to eliminate that issue, we solve the problem of
degree reduction with box constraints (see Problem 5.5). In this chapter, we show that the
same observations may apply to control points of the merged curve. An illustrative example
of such a situation is presented in §8.1. The problem of merging of planar Bézier curves with
box constraints is formulated in §8.2, and its solution is given in §8.3. Some other examples
are shown in §8.4. This chapter is based on paper [45].

8.1 Motivation

As it turns out, the observations on the degree reduction problem (see §5.1) also apply to the
problem of merging. In order to see the issue clearly, let us consider the following example.

Example 8.1. Once again, recall the composite Bézier curve “Ampersand” which consists
of three 5th degree Bézier segments. Here the control points are translated and scaled;
we have {(0.49, 0.07), (0.43, 0.22), (0.08, 0.67), (0, 0.97), (0.29, 0.98), (0.36, 0.9)}, {(0.36, 0.9),
(0.43, 0.84), (0.43, 0.68), (0.25, 0.58), (0.1, 0.36), (0.09, 0.23)}, and {(0.09, 0.23), (0.08, 0.13),
(0.14, 0.06), (0.34, 0), (0.52, 0.08), (0.48, 0.23)}. For the partition of the unit interval, see Ex-
ample 6.10. Now, consider a single Bézier curve of degree 16 being the solution of Problem 1.10
for k = 2 and l = 0. Figure 23b shows both curves. Clearly, the result of the approximation
is very accurate; errors: E = 8.01e−4 (see (1.23)) and E∞ = 3.03e−3 (see (1.11)). Observe
also that the original control points are quite close to the plot of the curve (see Figure 23a).
In contrast, the resulting control points are located far away from the plot of the curve (see
Figure 23c). Note that we are unable to see the curve and its control points in one figure. Be-
cause of the non-intuitive location of the control points, further modeling of the merged curve
is hard to imagine. Notice also that the resulting convex hull is huge, therefore, completely
useless. See Remarks 5.2 and 5.3. Comparing this result with the ones from Chapter 5, we
see that the defect seems to be even more significant (cf. Figures 11b, 14b, 15d and 17c).

93

CHAPTER 8. MERGING WITH BOX CONSTRAINTS 94

(a) (b) (c)

Figure 23: Figure (a) shows the original composite Bézier curve with its control points. Figure (b) illustrates the
original composite Bézier curve (blue solid line) and the C2,0-constrained merged Bézier curve (red dashed line) being
the solution of Problem 1.10. Figure (c) presents the control points of the merged curve (red color).

Figure 24: The original composite Bézier curve (blue solid line with blue control points) and the C2,0-constrained merged
Bézier curve (red dashed line with red and green control points) satisfying certain box constraints (blue dotted-dashed
frame). The control points which are constrained by the continuity conditions are green, while the other ones are red
and restricted by the box constraints.

CHAPTER 8. MERGING WITH BOX CONSTRAINTS 95

Now, let us impose some box constraints. We want to place the searched control points
inside the specified rectangular area (including edges of the rectangle). The resulting curve
is illustrated in Figure 24; parameters: m = 16, k = 2, l = 0. Notice that the approximation
is quite accurate; errors: E = 1.41e−3 and E∞ = 3.72e−03. Moreover, in this case, the
computed control points are located much closer to the merged curve. What is more, we have
obtained much smaller convex hull, which can be used to solve efficiently some important
problems (see Remark 5.3). The resulting curve is a solution of the new problem of merging
which we formulate in the next subsection. More examples can be found in §8.4.

8.2 Problem of merging of planar Bézier curves with box con-
straints

In this subsection, we formulate the following new problem of merging of planar Bézier curves
(cf. Problems 1.10 and 5.5).

Problem 8.2. [Merging of planar Bézier curves with box constraints]
Let 0 = t0 < t1 < . . . < ts = 1 be a partition of the interval [0, 1]. Let there be given
a composite Bézier curve P (t) = [Px(t), Py(t)] (t ∈ [0, 1]) which in the interval [ti−1, ti]
(i = 1, 2, . . . , s) is exactly represented as a Bézier curve P i(t) =

[
P ix(t), P iy(t)

]
∈ Π2

ni
, i.e.,

P (t) = P i(t) :=

ni∑
j=0

pij B
ni
j (ui(t)) ≡ bni,ui(t)p

i (t ∈ [ti−1, ti]),

where ui(t) := t−ti−1

∆ti−1
, bn,t := [Bn

0 (t), Bn
1 (t), . . . , Bn

n(t)], and pi :=
[
pi0, p

i
1, . . . , p

i
ni

]T with

pij := (pi,xj , pi,yj) ∈ R2. Find a Bézier curve

R(t) :=
m∑
j=0

rj B
m
j (t) ≡ bm,tr (t ∈ [0, 1]),

where R(t) = [Rx(t), Ry(t)] ∈ Π2
m, and r := [r0, r1, . . . , rm]T with ri := (rxi , r

y
i) ∈ R2, satisfy-

ing the following conditions:

(i) L2-error

E := ‖P −R‖L2 =

√∫ 1

0
‖P (t)−R(t)‖2 dt (8.1)

is minimized in the space Π2
m;

(ii) P and R are Ck,l-continuous at the endpoints, i.e.,

P (i)(0) = R(i)(0) (i = 0, 1, . . . , k),

P (j)(1) = R(j)(1) (j = 0, 1, . . . , l),

}
(8.2)

where k ≤ n1, l ≤ ns, k, l ≥ −1 and k + l < m− 1;

CHAPTER 8. MERGING WITH BOX CONSTRAINTS 96

(iii) control points ri (k < i < m − l) are located inside the specified rectangular area,
including edges of the rectangle, i.e., the following box constraints are fulfilled:

cz ≤ rzi ≤ Cz (i = k + 1, k + 2, . . . ,m− l − 1; z = x, y), (8.3)

where cx, cy, Cx, Cy ∈ R.

Remark 8.3. In Chapter 6, we are dealing with the traditional merging, i.e., the minimization
of (8.1), with the conditions (8.2), but without the box constraints (8.3) (see Problem 1.10).
In addition, a reasonable assumption that m ≥ maxi ni is made.

8.3 Solution

Now, we give the method of solving Problem 8.2.
First, we notice that some of the observations concerning Problem 5.5 are also true in the

case of Problem 8.2. As in §5.2, a planar Bézier curve being the solution of Problem 8.2 can
be obtained in a componentwise way. Therefore, it is sufficient to deal with the case of z = x
coordinate (cf. (8.3)). Moreover, observe that this property can be generalized. As a result,
the method given in this thesis can be easily applied to three dimensional Bézier curves.

Next, we recall that the conditions (8.2) yield the well-known formulas (2.5) and (2.6) for
the control points r0, r1, . . . , rk and rm, rm−1, . . . , rm−l, respectively.

What remains is to minimize

Ex(rx) :=

√∫ 1

0
(Px(t)−Rx(t))2 dt,

where rx := [rx0 , r
x
1 , . . . , r

x
m]T , subject to the conditions (8.3) for z = x. One can easily see

that E2
x(rx) is a quadratic function. Therefore, in the following subsection, we are dealing

with the box-constrained quadratic programming problem.

8.3.1 Quadratic programming with box constraints

In this subsection, we use the quadratic programming approach to solve Problem 8.2.
Recall that in §5.3, we mention the following quadratic programming problem with box

constraints:
min

v≤x≤w
cTx +

1

2
xTQx, (8.4)

where x,v,w, c ∈ Ri and Q ∈ Ri×i.
Now, we set v := [cx, cx, . . . , cx]T ∈ Rm−k−l−1, w := [Cx, Cx, . . . , Cx]T ∈ Rm−k−l−1 and

x := rFx , where we define F := {k + 1, k + 2, . . . ,m− l − 1} and use the notation of (5.8).
Next, we should adjust E2

x(rx) to the form (8.4).
Taking into account that Px is a piecewise polynomial, we have to subdivide the searched

polynomial Rx as well. Note that this can be done by applying de Casteljau algorithm
(see §1.4, pt. 9). According to Lemmas 6.1 and 6.3, we have

Rx(t) = Rix(t) :=

m∑
j=0

ri,xj Bm
j (ui(t)) ≡ bm,ui(t)Dirx (t ∈ [ti−1, ti]; i = 1, 2, . . . , s),

where Di =
[
d

(i)
jh

]
∈ R(m+1)×(m+1). Recall that the entries d

(i)
jh (i = 1, 2, . . . , s; j, h =

0, 1, . . . ,m) can be computed with the complexity O(sm2) using Algorithm 6.4.

CHAPTER 8. MERGING WITH BOX CONSTRAINTS 97

Remark 8.4. The efficient approach presented in §6.1 should be compared with the approach
of Lu [72, §2], where

Di := A1(ti−1/ti)A2(ti) (i = 1, 2, . . . , s) (8.5)

with

A1(λ) =

Bm

0 (λ) Bm
1 (λ) · · · Bm

m(λ)

0 Bm−1
0 (λ) · · · Bm−1

m−1(λ)
...

...
. . .

...
0 0 · · · 1

 , A2(λ) =

1 0 · · · 0

B1
0(λ) B1

1(λ) · · · 0
...

...
. . .

...
Bm

0 (λ) Bm
1 (λ) · · · Bm

m(λ)

 .
Observe that the direct use of (8.5) results in the complexity O(sm3).

Next, assuming that K := {0, 1, . . . ,m}, C := K \ F and using the notation of (5.8), we
write (cf. [72, (11)])

E2
x(rx) =

∫ 1

0
(Px(t)−Rx(t))2 dt =

s∑
i=1

∫ ti

ti−1

(
P ix(t)−Rix(t)

)2
dt

=
s∑
i=1

∆ti−1

∫ 1

0

(
bni,vp

i,x − bm,vD
K,C
i rCx − bm,vD

K,F
i rFx

)2
dv

= cT rFx +
1

2

(
rFx
)T

QrFx + a =: g
(
rFx
)

+ a,

where

pi,x :=
[
pi,x0 , pi,x1 , . . . , pi,xni

]T
, Q := 2

s∑
i=1

∆ti−1

(
DK,Fi

)T
Gm,mD

K,F
i ,

c := 2
s∑
i=1

∆ti−1

(
DK,Fi

)T (
Gm,mD

K,C
i rCx −Gm,nip

i,x
)
,

and a ∈ R is a certain constant term. Here GM,N :=
[
gM,N
ij

]
∈ R(M+1)×(N+1) is the well-

known Gramian matrix of the Bernstein basis with the elements

gM,N
ij :=

1

M +N + 1

(
M

i

)(
N

j

)(
M +N

i+ j

)−1

(i = 0, 1, . . . ,M ; j = 0, 1, . . . , N).

Obviously, a is meaningless in the minimization process, therefore, the significant terms of
E2
x(rx) are given by g(rFx), which is written in the form (8.4).

Remark 8.5. Matrix Q is positive definite (see [72, §3.1]), therefore, the objective function g
is strictly convex. Furthermore, the feasible set is nonempty, closed and convex. We conclude
that the quadratic programming problem has a unique solution (see, e.g., [29, Proposition 2.5])
and so does Problem 8.2. In contrast, a solution of the analogical degree reduction problem
may not be unique (cf. Theorem 5.6). The difference is that, in this chapter, we consider the
continuous inner product (see (8.1)) instead of the discrete inner product (see (5.3)).

Recall that there are many papers dealing with the box-constrained quadratic program-
ming problem. Some of them are mentioned in §5.3.

CHAPTER 8. MERGING WITH BOX CONSTRAINTS 98

8.4 Examples

In this subsection, we show several examples of application of the discussed method. A solu-
tion of Problem 1.10 is computed using Algorithm 6.8. To solve the quadratic programming
problem with box constraints (8.4), we use the matrix version of MapleTM QPSolve command.
It is worth noting that this procedure implements an iterative active set method and it is
suited for the box constraints, i.e., the vectors of lower and upper bounds can be passed using
the optional parameter bd. According to the documentation provided by MaplesoftTM, in
the case of the convex optimization, a global minimum is returned (cf. Remark 8.5). For the
initial point, we choose the lower bounds, i.e., cx and cy. The results have been obtained on
a computer with Intel Core i5-3337U 1.8GHz processor and 8GB of RAM, using MapleTM13
with 24-digit arithmetic.

Example 8.6. We recall the composite Bézier curve “D” (see Figure 25a) formed by three
cubic segments. Here the control points are translated and scaled; we have {(0.32, 0.81),
(0.26, 0.59), (0.18, 0), (0.06, 0.27)}, {(0.06, 0.27), (0, 0.42), (0.42, 0.08), (0.57, 0.25)} and {(0.57,
0.25), (0.76, 0.46), (0.8, 1), (0.22, 0.85)}. For the partition of the unit interval, see Example 1.3.
Figure 25b shows the result of the traditional Ck,l-constrained merging for m = 18, k = 0,
l = 1. The merged curve looks like a perfect approximation (errors: E = 3.25e−3 and
E∞ = 9.67e−3), unfortunately, it suffers from the defect described in §8.1 (see Figure 25c).
To avoid this, we solve Problem 8.2 for m = 18, k = 0, l = 1, with the following box
constraints:

cx := min
1≤i≤s

min
0≤j≤ni

pi,xj − 0.2 = −0.2, Cx := max
1≤i≤s

max
0≤j≤ni

pi,xj = 0.8,

cy := min
1≤i≤s

min
0≤j≤ni

pi,yj − 0.3 = −0.3, Cy := max
1≤i≤s

max
0≤j≤ni

pi,yj = 1
(8.6)

(cf. (8.3)), and obtain the curve shown in Figure 25d (errors: E = 1.28e−2 and E∞ =
3.01e−2). Compare Figure 25d with Figure 25c to see a big difference in the location of the
resulting control points. Obviously, the curve in Figure 25d is much more satisfying in this
regard.

Example 8.7. Now, we consider the composite Bézier curve with four 5th degree Bézier
segments (see Figure 26a). For the original control points, see [72, Example 3]. Here each
coordinate of the control points is divided by 5.1. According to (6.15), we get t0 = 0, t1

.
=

0.24, t2
.
= 0.49, t3

.
= 0.76, t4 = 1. As a result of the traditional Ck,l-constrained merging

(m = 19, k = l = 0), we obtain the Bézier curve which is illustrated in Figure 26b. Once
again, we get a good approximation (errors: E = 2.08e−3 and E∞ = 5.65e−3), however,
the resulting control points are located far away from the plot of the curve (see Figure 26c).
Taking into account the axis scale in Figure 26c, we conclude that this example seems to be
extremely difficult. Nonetheless, the solution of Problem 8.2 for m = 19, k = l = 0, with the
box constraints

cx := min
1≤i≤s

min
0≤j≤ni

pi,xj − 0.2 = −0.2, Cx := max
1≤i≤s

max
0≤j≤ni

pi,xj + 0.2
.
= 0.65,

cy := min
1≤i≤s

min
0≤j≤ni

pi,yj − 0.2 = −0.2, Cy := max
1≤i≤s

max
0≤j≤ni

pi,yj + 0.2 = 1.2

is quite decent (errors: E = 9.71e−3 and E∞ = 1.90e−2). See Figure 26d.

CHAPTER 8. MERGING WITH BOX CONSTRAINTS 99

(a) (b)

(c) (d)

Figure 25: Merging of three segments of the composite Bézier curve. The original composite curve (blue solid line with
blue control points) and the merged curve (red dashed line with red and green control points); parameters: m = 18,
k = 0, l = 1. Figure (a) shows the original composite curve with its control points. Figure (b) illustrates the curve
being the solution of Problem 1.10. Figure (c) presents the control points of the merged curve shown in Figure (b). The
curve being the solution of Problem 8.2 with its control points is shown in Figure (d). The control points which are
constrained by the continuity conditions are green, while the other ones are red and in the case of (d) bounded by the
blue dotted-dashed frame.

CHAPTER 8. MERGING WITH BOX CONSTRAINTS 100

(a) (b)

(c) (d)

Figure 26: Merging of four segments of the composite Bézier curve. The original composite curve (blue solid line with
blue control points) and the merged curve (red dashed line with red control points); parameters: m = 19, k = l = 0.
Figure (a) shows the original composite curve with its control points. Figure (b) illustrates the curve being the solution
of Problem 1.10. Figure (c) presents the control points of the merged curve shown in Figure (b). The curve being
the solution of Problem 8.2 with its control points and the rectangular area (blue dotted-dashed frame) are shown in
Figure (d).

Remark 8.8. As stated in Remark 5.15, selection of the rectangular area is a difficult issue.
The choice always depends on the considered example and on the precision level that we
accept as satisfactory. However, there is a strategy that seems to work quite well for the
given examples. To explain this procedure, let us revisit Example 8.6. At the beginning, we
set

c(1)
x := min

1≤i≤s
min

0≤j≤ni

pi,xj = 0, C(1)
x := max

1≤i≤s
max

0≤j≤ni

pi,xj = 0.8,

c(1)
y := min

1≤i≤s
min

0≤j≤ni

pi,yj = 0, C(1)
y := max

1≤i≤s
max

0≤j≤ni

pi,yj = 1.
(8.7)

Consequently, the resulting control points will be bounded by the outermost control points

CHAPTER 8. MERGING WITH BOX CONSTRAINTS 101

of the original curves. Unfortunately, the obtained curve is unsatisfactory (see Figure 27a).
Next, to improve this result, we must expand the rectangular area. Intuition tells us that we
should try to move the borders with the highest numbers of the control points. We consider

c(2)
x := c(1)

x − 0.04w1
.
= −0.05, C(2)

x := C(1)
x ,

c(2)
y := c(1)

y − 0.04w1
.
= −0.05, C(2)

y := C(1)
y ,

(8.8)

where

wi :=

√(
C

(i)
x − c(i)

x

)2
+
(
C

(i)
y − c(i)

y

)2

is the diagonal length of ith rectangular area. Notice that the error is now lower (see Fig-
ure 27b and Table 13). Therefore, we should try to make another step in the same direction.
This time, the expansion is greater, i.e., we set

c(3)
x := c(2)

x − 0.08w2
.
= −0.16, C(3)

x := C(2)
x ,

c(3)
y := c(2)

y − 0.08w2
.
= −0.16, C(3)

y := C(2)
y .

(8.9)

The resulting curve can be seen in Figure 27c. See also Table 13. Observe that, in Example 8.6,
the rectangular area (8.6) is even larger. See Figure 25d. Taking into account that QPSolve
is an iterative method which we apply separately for each coordinate, pairs of numbers of
iterations are also given in Table 13.

According to the experiments, if control points of a curve being the solution of Prob-
lem 1.10 are located very far away from the plot of the curve (see Figures 23c, 25c and 26c),
then it is difficult to find a satisfying solution of Problem 8.2. For that reason, the examples
given in this chapter are much more demanding than the ones presented in Chapter 5. More-
over, note that in the case of the box-constrained merging, majority of the resulting control
points are located on borders (see Figures 24, 25d and 26d).

Regardless of choice of the rectangular area, one should realize that because of the addi-
tional constraints (8.3), approximation error must be inevitably larger than for the traditional
approach.

Box constraints E E∞ Iterations

(8.7) 2.21e−2 5.56e−2 (18, 20)

(8.8) 1.80e−2 4.21e−2 (21, 18)

(8.9) 1.42e−2 3.28e−2 (19, 26)

(8.6) 1.28e−2 3.01e−2 (20, 29)

Table 13: L2-errors, maximum errors and numbers of iterations for merging of three segments of the composite Bézier
curve “D” with box constraints. Parameters: m = 18, k = 0, l = 1.

CHAPTER 8. MERGING WITH BOX CONSTRAINTS 102

(a) (b) (c)

Figure 27: Merging of three segments of the composite Bézier curve. The original composite curve (blue solid line with
blue control points) and the merged curve (red dashed line with red and green control points) satisfying the following
box constraints (blue dotted-dashed frames): (8.7) (see Figure (a)), (8.8) (see Figure (b)) and (8.9) (see Figure (c)). The
control points which are constrained by the continuity conditions are green, while the other ones are red and bounded
by the blue dotted-dashed frames. Parameters: m = 18, k = 0, l = 1.

Remark 8.9. To solve the box-constrained quadratic programming problem (8.4), one can
choose a method provided by software library of selected programming language or implement
one of the algorithms given in [39, 49, 80]. For that reason, the running times strongly depend
on the implementation of the selected method. However, regardless of the choice, the box
constraints make Problem 8.2 more difficult to solve. Therefore, the running times of methods
dealing with the new problem must be longer than in the case of the traditional merging. See
the comparison given in Table 14.

Problem 1.10 Problem 8.2

Running times [ms] Running times [ms] Iterations

Example 8.1 30 227 (16, 18)

Example 8.6 48 427 (20, 29)

Example 8.7 71 699 (18, 27)

Table 14: Running times of the traditional (see Algorithm 6.8) and box-constrained merging of Bézier curves.

Bibliography

[1] Y. J. Ahn, Using Jacobi polynomials for degree reduction of Bézier curves with Ck-
constraints, Computer Aided Geometric Design 20 (2003), 423–434.

[2] Y. J. Ahn, B. Lee, Y. Park, J. Yoo, Constrained polynomial degree reduction in the L2-
norm equals best weighted Euclidean approximation of Bézier coefficients, Computer
Aided Geometric Design 21 (2004), 181–191.

[3] R. Ait-Haddou, M. Bartoň, Constrained multi-degree reduction with respect to Jacobi
norms, Computer Aided Geometric Design 42 (2016), 23–30.

[4] D. Bakhshesh, M. R. Samiee, The weighted dual functions for Wang-Said type gen-
eralized Ball bases with and without boundary constraints, International Journal of
Computer and Electrical Engineering 4 (2012), 573–577.

[5] R. E. Barnhill, R. F. Riesenfeld (Eds.), Computer Aided Geometric Design, Academic
Press, New York, 1974.

[6] B. A. Barsky, T. D. DeRose, Geometric continuity of parametric curves. Technical report
UCB/CSD 84/205, University of California, Berkeley, 1984.

[7] M. Bartoň, B. Jüttler, Computing roots of polynomials by quadratic clipping, Computer
Aided Geometric Design 24 (2007), 125–141.

[8] S. Basu, R. Pollack, M. F. Roy, Algorithms in Real Algebraic Geometry, second edition,
Springer, Berlin, 2006.

[9] P. Bézier, Définition numérique des courbes et surfaces I, Automatisme XI (1966), 625–
632 (in French).

[10] P. Bézier, Définition numérique des courbes et surfaces II, Automatisme XII (1967),
17–21 (in French).

[11] P. Bézier, Procédé de définition numérique des courbes et surfaces non mathématiques,
Automatisme XIII (1968), 189–196 (in French).

[12] W. Boehm, A. Müller, On de Casteljau’s algorithm, Computer Aided Geometric Design
16 (1999), 587–605.

[13] P. Bogacki, S. E. Weinstein, Y. Xu, Degree reduction of Bézier curves by uniform ap-
proximation with endpoint interpolation, Computer-Aided Design 27 (1995), 651–661.

[14] J. F. Bonnans, J. C. Gilbert, C. Lemarechal, C. A. Sagastizábal, Numerical Optimiza-
tion: Theoretical and Practical Aspects, second edition, Springer, Berlin, 1997.

[15] G. Brunnett, T. Schreiber, J. Braun, The geometry of optimal degree reduction of
Bézier curves, Computer Aided Geometric Design 13 (1996), 773–788.

103

BIBLIOGRAPHY 104

[16] G. Chang, T. W. Sederberg, Over and Over Again, first edition, The Mathematical
Association of America, Washington, DC, 1997.

[17] X. Chen, W. Ma, J. Paul, Multi-degree reduction of Bézier curves using reparameteri-
zation, Computer-Aided Design 43 (2011), 161–169.

[18] G. Chen, G. Wang, Optimal multi-degree reduction of Bézier curves with constraints
of endpoints continuity, Computer Aided Geometric Design 19 (2002), 365–377.

[19] J. Chen, G. Wang, Approximate merging of B-spline curves and surfaces, Applied
Mathematics-A Journal of Chinese Universities 25 (2010), 429–436.

[20] M. Cheng, G. Wang, Approximate merging of multiple Bézier segments, Progress in
Natural Science 18 (2008), 757–762.

[21] Z. Ciesielski, The basis of B-splines in the space of algebraic polynomials, Ukrainian
Mathematical Journal 38 (1987), 311–315 (in Russian).

[22] M. Daniel, J. C. Daubisse, The numerical problem of using Bézier curves and surfaces
in the power basis, Computer Aided Geometric Design 6 (1989), 121–128.

[23] K. R. Davidson, A. P. Donsig, Real Analysis with Real Applications, Prentice Hall, Inc.,
Upper Saddle River, 2002.

[24] P. de Casteljau, Outillage méthodes calcul. Technical report, André Citroën Automobile
SA, Paris, 1959 (in French).

[25] P. de Casteljau, Courbes et surfaces à pôles. Technical report, André Citroën Automo-
bile SA, Paris, 1963 (in French).

[26] P. de Casteljau, De Casteljau’s autobiography: My time at Citroën, Computer Aided
Geometric Design 16 (1999), 583–586.

[27] T. D. DeRose, Geometric continuity: a parameterization independent measure of con-
tinuity for computer aided geometric design, Ph.D. thesis, University of California,
Berkeley, 1985. Available as technical report UCB/CSD 86/255.

[28] E. H. Doha, A. H. Bhrawy, M. A. Saker, On the Derivatives of Bernstein Polynomials:
An Application for the Solution of High Even-Order Differential Equations, Boundary
Value Problems 2011 (2011), 1–16.

[29] Z. Dostál, Optimal Quadratic Programming Algorithms. With Applications to Varia-
tional Inequalities, Springer, New York, 2009.

[30] M. Eck, Degree reduction of Bézier curves, Computer Aided Geometric Design 10
(1993), 237–251.

[31] M. Eck, Least squares degree reduction of Bézier curves, Computer-Aided Design 27
(1995), 845–851.

[32] G. E. Farin, Algorithms for rational Bézier curves, Computer-Aided Design 15 (1983),
73–77.

[33] G. E. Farin, Curves and Surfaces for Computer-Aided Geometric Design. A Practical
Guide, fifth edition, Academic Press, Boston, 2002.

[34] G. E. Farin, J. Hoschek, M. Kim, Handbook of Computer Aided Geometric Design, first
edition, North Holland, Amsterdam, 2002.

[35] R. T. Farouki, On the stability of transformations between power and Bernstein poly-
nomial forms, Computer Aided Geometric Design 8 (1991), 29–36.

[36] R. T. Farouki, The Bernstein polynomial basis: a centennial retrospective, Computer
Aided Geometric Design 29 (2012), 379–419.

BIBLIOGRAPHY 105

[37] R. T. Farouki, V. T. Rajan, On the numerical condition of polynomials in Bernstein
form, Computer Aided Geometric Design 4 (1987), 191–216.

[38] R. T. Farouki, V. T. Rajan, Algorithms for polynomials in Bernstein form, Computer
Aided Geometric Design 5 (1988), 1–26.

[39] L. Fernandes, A. Fischer, J. Júdice, C. Requejo, J. Soares, A block active set algorithm
for large-scale quadratic programming with box constraints, Annals of Operations Re-
search 81 (1998), 75–95.

[40] A. R. Forrest, Interactive interpolation and approximation by Bézier polynomials, The
Computer Journal 15 (1972), 71–79.

[41] R. N. Goldman, Dual polynomial bases, Journal of Approximation Theory 79 (1994),
311–346.

[42] R. N. Goldman, Pyramid Algorithms: A Dynamic Programming Approach to Curves
and Surfaces for Geometric Modeling, Morgan Kaufmann Publishers, San Francisco,
2003.

[43] P. Gospodarczyk, Degree reduction of Bézier curves with restricted control points area,
Computer-Aided Design 62 (2015), 143–151.

[44] P. Gospodarczyk, S. Lewanowicz, P. Woźny, Gk,l-constrained multi-degree reduction of
Bézier curves, Numerical Algorithms 71 (2016), 121–137.

[45] P. Gospodarczyk, P. Woźny, Merging of Bézier curves with box constraints, Journal of
Computational and Applied Mathematics 296 (2016), 265–274.

[46] P. Gospodarczyk, P. Woźny, A new property of dual bases and its application, preprint,
2015. Available at http://arxiv.org/abs/1511.08264.

[47] M. P. Groover, E. W. Zimmers, CAD/CAM: Computer-Aided Design and Manufactur-
ing, Prentice Hall, Inc., Englewood Cliffs, 1983.

[48] Z. Guohui, L. Xiuping, S. Zhixun, A dual functional to the univariate B-spline, Journal
of Computational and Applied Mathematics 195 (2006), 292–299.

[49] C. Han, P. M. Pardalos, Y. Ye, Computational aspects of an interior point algorithm
for quadratic programming problems with box constraints, in: T. F. Coleman, Y. Li
(Eds.), Proceedings of the Workshop on Large-Scale Numerical Optimization, SIAM,
Philadelphia, 1990, 92–112.

[50] J. Hoschek, Approximate conversion of spline curves, Computer Aided Geometric De-
sign 4 (1987), 59–66.

[51] S. Hu, R. Tong, T. Ju, J. Sun, Approximate merging of a pair of Bézier curves,
Computer-Aided Design 33 (2001), 125–136.

[52] B. Jüttler, The dual basis functions for the Bernstein polynomials, Advances in Com-
putational Mathematics 8 (1998), 345–352.

[53] S. N. Kersey, Dual basis functions in subspaces of inner product spaces, Applied Math-
ematics and Computation 219 (2013), 10012–10024.

[54] P. Kiciak, Podstawy modelowania krzywych i powierzchni. Zastosowania w grafice kom-
puterowej, wydanie drugie, WNT, Warszawa, 2005 (in Polish).

[55] H. J. Kim, A. J. Ahn, Good Degree Reduction of Bézier Curves Using Jacobi Polyno-
mials, Computers and Mathematics with Applications 40 (2000), 1205–1215.

[56] M. K. Kozlov, S. P. Tarasov, L. G. Khachian, Polynomial solvability of convex quadratic
programming, Soviet Mathematics Doklady 20 (1979), 1108–1111.

http://arxiv.org/abs/1511.08264

BIBLIOGRAPHY 106

[57] M. Lachance, Approximation by constrained parametric polynomials, Rocky Mountain
Journal of Mathematics 21 (1991), 473–488.

[58] K. Lalit Narayan, K. Mallikarjuna Rao, M. M. M. Sarcar, Computer Aided Design and
Manufacturing, Prentice-Hall of India Private Limited, New Delhi, 2008.

[59] C. W. Lawson, R. J. Hanson, Solving Least Squares Problems, John Wiley and Sons,
Inc., New York, 1974.

[60] B. Lee, Y. Park, J. Yoo, Application of Legendre-Bernstein basis transformations to
degree elevation and degree reduction, Computer Aided Geometric Design 19 (2002),
709–718.

[61] S. Lewanowicz, P. Keller, P. Woźny, Constrained approximation of rational triangular
Bézier surfaces by polynomial triangular Bézier surfaces, preprint, 2015. Available at
http://arxiv.org/abs/1504.03557.

[62] S. Lewanowicz, P. Woźny, Dual generalized Bernstein basis, Journal of Approximation
Theory 138 (2006), 129–150.

[63] S. Lewanowicz, P. Woźny, Bézier representation of the constrained dual Bernstein poly-
nomials, Applied Mathematics and Computation 218 (2011), 4580–4586.

[64] S. Lewanowicz, P. Woźny, Multi-degree reduction of tensor product Bézier surfaces with
general constraints, Applied Mathematics and Computation 217 (2011), 4596–4611.

[65] S. Lewanowicz, P. Woźny, P. Keller, Polynomial approximation of rational Bézier curves
with constraints, Numerical Algorithms 59 (2012), 607–622.

[66] S. Lewanowicz, P. Woźny, P. Keller, Weighted polynomial approximation of ratio-
nal Bézier curves, technical report, 2015. Available at http://arxiv.org/abs/1502.
07877.

[67] R. A. Liming, Practical analytical geometry with applications to aircraft, Macmillan,
New York, 1944.

[68] L. Lu, A note on iterative process for G2-multi degree reduction of Bézier curves, Ap-
plied Mathematics and Computation 218 (2012), 6987–6990.

[69] L. Lu, Effective C1G2-merging of Two Bézier Curves by Matrix Computation, Interna-
tional Journal of Advancements in Computing Technology 5 (2013), 1117–1123.

[70] L. Lu, Explicit G2-constrained degree reduction of Bézier curves by quadratic optimiza-
tion, Journal of Computational and Applied Mathematics 253 (2013), 80–88.

[71] L. Lu, An explicit method for G3 merging of two Bézier curves, Journal of Computa-
tional and Applied Mathematics 260 (2014), 421–433.

[72] L. Lu, Explicit algorithms for multiwise merging of Bézier curves, Journal of Compu-
tational and Applied Mathematics 78 (2015), 138–148.

[73] L. Lu, Gram matrix of Bernstein basis: Properties and applications, Journal of Com-
putational and Applied Mathematics 280 (2015), 37–41.

[74] L. Lu, Some improvements on optimal multi-degree reduction of Bézier curves with
geometric constraints, Computer-Aided Design 59 (2015), 39–42.

[75] L. Lu, C. Jiang, An iterative algorithm for G2 multiwise merging of Bézier curves,
Journal of Computational and Applied Mathematics 296 (2016), 352–361.

[76] L. Lu, G. Wang, Optimal multi-degree reduction of Bézier curves with G2-continuity,
Computer Aided Geometric Design 23 (2006), 673–683.

http://arxiv.org/abs/1504.03557
http://arxiv.org/abs/1502.07877
http://arxiv.org/abs/1502.07877

BIBLIOGRAPHY 107

[77] L. Lu, G. Wang, A quadratic programming method for optimal degree reduction of
Bézier curves with G1-continuity, Journal of Zhejiang University SCIENCE A 8 (2007),
1657–1662.

[78] L. Lu, G. Wang, Application of Chebyshev II-Bernstein basis transformations to degree
reduction of Bézier curves, Journal of Computational and Applied Mathematics 221
(2008), 52–65.

[79] D. Lutterkort, J. Peters, U. Reif, Polynomial degree reduction in the L2-norm equals
best Euclidean approximation of Bézier coefficients, Computer Aided Geometric Design
16 (1999), 607–612.

[80] J. J. Moré, G. Toraldo, Algorithms for bound constrained quadratic programming prob-
lems, Numerische Mathematik 55 (1989), 377–400.

[81] M. Müller-Prove, Vision and Reality of Hypertext and Graphical User Interfaces, mas-
ter’s thesis, Universität Hamburg, Hamburg, 2002. Available at http://edoc.sub.
uni-hamburg.de/informatik/volltexte/2009/52/pdf/B_237.pdf (accessed July 20,
2015).

[82] M. B. Nathanson, Additive Number Theory: The Classical Bases, Springer, New York,
1996.

[83] Y. Park, U. J. Choi, The Error Analysis for Degree Reduction of Bézier Curves, Com-
puters and Mathematics with Applications 27 (1994), 1–6.

[84] L. Piegl, W. Tiller, Algorithm for degree reduction of B-spline curves, Computer-Aided
Design 27 (1995), 101–110.

[85] L. Piegl, W. Tiller, The NURBS Book, second edition, Springer, Berlin, 1997.
[86] H. Prautzsch, W. Boehm, M. Paluszny, Bézier and B-Spline Techniques, first edition,

Springer, Berlin, 2002.
[87] A. Rababah, M. Al-Natour, The weighted dual functionals for the univariate Bernstein

basis, Applied Mathematics and Computation 186 (2007), 1581–1590.
[88] A. Rababah, M. Al-Natour, Weighted dual functions for Bernstein basis satisfying

boundary constraints, Applied Mathematics and Computation 199 (2008), 456–463.
[89] A. Rababah, B. Lee, J. Yoo, A simple matrix form for degree reduction of Bézier curves

using Chebyshev-Bernstein basis transformations, Applied Mathematics and Computa-
tion 181 (2006), 310–318.

[90] A. Rababah, B. Lee, J. Yoo, Multiple Degree Reduction and Elevation of Bézier Curves
Using Jacobi-Bernstein Basis Transformations, Numerical Functional Analysis and Op-
timization 28 (2007), 1179–1196.

[91] A. Rababah, S. Mann, Iterative process for G2-multi degree reduction of Bézier curves,
Applied Mathematics and Computation 217 (2011), 8126–8133.

[92] A. Rababah, S. Mann, Linear methods for G1, G2, and G3–Multi-degree reduction of
Bézier curves, Computer-Aided Design 45 (2013), 405–414.

[93] P. B. Stark, R. L. Parker, Bounded-Variable Least-Squares: an Algorithm and Applica-
tions, Computational Statistics 10 (1995), 129–141.

[94] H. Sunwoo, Matrix representation for multi-degree reduction of Bézier curves, Computer
Aided Geometric Design 22 (2005), 261–273.

[95] H. Sunwoo, N. Lee, A unified matrix representation for degree reduction of Bézier
curves, Computer Aided Geometric Design 21 (2004), 151–164.

http://edoc.sub.uni-hamburg.de/informatik/volltexte/2009/52/pdf/B_237.pdf
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2009/52/pdf/B_237.pdf

BIBLIOGRAPHY 108

[96] C. Tai, S. Hu, Q. Huang, Approximate merging of B-spline curves via knot adjustment
and constrained optimization, Computer-Aided Design 35 (2003), 893–899.

[97] M. A. Watkins, A. J. Worsey, Degree reduction of Bézier curves, Computer-Aided Design
20 (1988), 398–405.

[98] D. E. Weisberg, The engineering design revolution, 2008. Available at http://www.
cadhistory.net/toc.htm (accessed July 20, 2015).

[99] P. Wolfe, The simplex algorithm for quadratic programming, Econometrica 27 (1959),
382–398.

[100] P. Woźny, Construction of dual bases, Journal of Computational and Applied Mathe-
matics 245 (2013), 75–85.

[101] P. Woźny, Construction of dual B-spline functions, Journal of Computational and Ap-
plied Mathematics 260 (2014), 301–311.

[102] P. Woźny, P. Gospodarczyk, S. Lewanowicz, Efficient merging of multiple segments of
Bézier curves, Applied Mathematics and Computation 268 (2015), 354–363.

[103] P. Woźny, S. Lewanowicz, Multi-degree reduction of Bézier curves with constraints,
using dual Bernstein basis polynomials, Computer Aided Geometric Design 26 (2009),
566–579.

[104] P. Woźny, S. Lewanowicz, Constrained multi-degree reduction of triangular Bézier sur-
faces using dual Bernstein polynomials, Journal of Computational and Applied Math-
ematics 235 (2010), 785–804.

[105] Y. Ye, E. Tse, An extension of Karmarkar’s projective algorithm for convex quadratic
programming, Mathematical Programming 44 (1989), 157–179.

[106] L. Zhang, J. Tan, Z. Dong, The dual bases for the Bézier-Said-Wang type generalized
Ball polynomial bases and their applications, Applied Mathematics and Computation
217 (2010), 3088–3101.

[107] L. Zhang, J. Tan, H. Wu, Z. Liu, The weighted dual functions for Wang-Bézier type
generalized Ball bases and their applications, Applied Mathematics and Computation
215 (2009), 22–36.

[108] L. Zhang, H. Wu, J. Tan, Dual bases for Wang-Bézier basis and their applications,
Applied Mathematics and Computation 214 (2009), 218–227.

[109] L. Zhang, H. Wu, J. Tan, Dual basis functions for the NS-power basis and their appli-
cations, Applied Mathematics and Computation 207 (2009), 434–441.

[110] R. Zhang, G. Wang, Constrained Bézier curves’ best multi-degree reduction in the L2-
norm, Progress in Natural Science 15 (2005), 843–850.

[111] R. Zhang, G. Wang, W. Ma, Best Multi-degree Reduction of Bernstein Polynomial
in L2-norm Based on an Explicit Termination Criterion, Computer-Aided Design &
Applications 4 (2007), 181–190.

[112] L. Zhou, G. Wang, Optimal constrained multi-degree reduction of Bézier curves with
explicit expressions based on divide and conquer, Journal of Zhejiang University SCI-
ENCE A 10 (2009), 577–582.

[113] L. Zhou, G. Wang, Matrix representation for optimal multi-degree reduction of Bézier
curves with G1 constraints, Journal of Computer Aided Design & Computer Graphics
22 (2010), 735–740.

http://www.cadhistory.net/toc.htm
http://www.cadhistory.net/toc.htm

BIBLIOGRAPHY 109

[114] L. Zhou, Y. Wei, Y. Yao, Optimal multi-degree reduction of Bézier curves with geometric
constraints, Computer-Aided Design 49 (2014), 18–27.

[115] P. Zhu, G. Wang, Optimal approximate merging of a pair of Bézier curves with G2-
continuity, Journal of Zhejiang University SCIENCE A 10 (2009), 554–561.

Index

active set method, 44, 54, 64–69, 98
affine invariance, 7
approximate conversion of Bézier curves, 11

Bézier
curve, 6–10
Pierre, 3, 7
points, see control points
polygon, see control polygon
spline, see composite Bézier curve

Bernstein
polynomials, 3–6
Sergei Natanovich, 6

beta function, 40
binomial coefficient, 3
bivariate dual Bernstein polynomials, 29
bounded-variable least-squares, see BVLS
box constraints, 19, 59, 61, 75, 96
box-constrained quadratic programming, see

quadratic programming with box con-
straints

BVLS
algorithm, 64–69
problem, 64

Ck,l continuity constraints, see parametric con-
tinuity constraints

Cp,q/Gk,l continuity constraints, see hybrid
continuity constraints

CAD, see computer aided design
CAGD, see computer aided geometric design
Chebyshev polynomials

of the first kind, 14
of the second kind, 14

composite Bézier curve, 10–11
computer aided

design, 1–2
geometric design, 2–3

constrained

Chebyshev polynomials, 14
dual Bernstein polynomials, 34–38
Jacobi polynomials, 14

continuity
constraints, 12, 23–27, 42–48, 86–88
parameters {λi} and {µj}, 25–27, 42–48,

86–88
control

points, 6
polygon, 6

convex hull property, 7

de Casteljau
algorithm, 8–10
Paul, 3, 7

degree elevation
of Bézier curves, 8, 12
formulas for Bernstein polynomials, 5

degree of a Bézier curve, 6
degree reduction of Bézier curves, 11–19, 39–

75
conventional problem, 19, 39–59
traditional problem, 58–59
unconstrained problem, 12
with Ck,l constraints, 17–18, 23–24, 58–

75
with Cp,q/Gk,l constraints, 18–19, 27, 45–

57
with Gk,l constraints, 18–19, 24–26, 39–

57
with box constraints, 19, 58–75
with prescribed boundary control points,

40–42
with respect to the L2-norm, 14–19
with respect to the L∞-norm, 14
with respect to the Hausdorff distance, 14
with respect to the weighted L2-norm, 14,

39–57
derivatives

110

INDEX 111

of Bézier curves, 7–8
of Bernstein polynomials, 5

dual
B-spline functionals, 29
B-spline functions, 29
basis, 28–38, 67–69
Bernstein polynomials, 14, 20, 29, 34–38
discrete Bernstein polynomials, 37
functions, 28
NS-power bases, 29
polynomial bases, 29
tensor product Bernstein polynomials, 29
Wang-Bézier type generalized Ball poly-

nomials, 29
duality conditions, 28

endpoint interpolation
constraints, 12
property, 7

feasible set, 63
forward difference operator ∆, 8

Gk,l continuity constraints, see geometric con-
tinuity constraints

geometric continuity constraints, 18, 21, 24–
27, 42–48, 86–88

gradient projection method, 64
Gramian matrix, 30

of the Bernstein basis, 97

Hausdorff distance, 14
Horner scheme, 9
Horner’s

method, see Horner scheme
rule, see Horner scheme

hybrid continuity constraints, 19, 27, 45–48,
88

inner product, 28, 34, 36–38, 97
integrals of Bernstein polynomials, 5
interior point algorithm, 64
intersection problem, 59
invariance under affine parameter transforma-

tions, 7

Karush-Kuhn-Tucker conditions for BVLS, see
KKT conditions for BVLS

KKT conditions for BVLS, 65
Kronecker delta, 4

L2-norm, 13
l2-norm, 19
L∞-norm, 14
least squares approximation, 13, 29
Legendre polynomials, 14
LUP decomposition, 67

maximum error, 13
merging of Bézier curves, 19–21, 76–102

conventional problem, 19, 76–92
with Ck,l constraints, 19–20, 24, 76–85,

93–102
with Cp,q/Gk,l constraints, 21, 27, 88, 90–

92
with Gk,l constraints, 20–21, 26–27, 86–

92
with box constraints, 21, 93–102
with prescribed boundary control points,

78–80
with respect to the L2-norm, 19–21, 76–

102
with respect to the l2-norm, 19

monomial basis, 5, 7, 9, 12

NNLS algorithm, 64
non-negative least-squares, see NNLS algorithm
nonlinear programming, 44, 54, 88, 90
nonlinear simplex method, 55

objective function, 62
orthogonal polynomials, 14
orthonormal basis, 30

parametric continuity constraints, 17, 20, 23–
24

partition of unity, 4
piecewise Bézier curve, see composite Bézier

curve
positive

definite matrix, 97
semi-definite matrix, 63

power basis, see monomial basis

quadratic programming, 44–45, 54, 62–64, 88,
90, 96–97

INDEX 112

with box constraints, 64, 96–97

rectangular area, see box constraints
Remes-type algorithm, 14
reparametrization, 14, 18, 21

sequential quadratic programming method, see
SQP method

shifted factorial, 25
space

Πn, 4, 34
Πd
n, 6

Π
(k,l)
n , 34–35

SQP method, 44, 54
subdivision

formula for Bernstein polynomials, 5
of Bézier curves, 10, 76–78, 96–97

subproblem of BVLS algorithm, 65–69
symmetry property of Bernstein polynomials,

4
system of normal equations, 14, 21, 66–67

unconstrained nonlinear programming, 55
uniform approximation, 14

Weierstrass approximation theorem, 6
weighted

L2-norm, 13
least squares approximation, 13

Wolfe’s method, 64, 73

	Introduction
	Computer aided design
	Computer aided geometric design
	Bernstein polynomials
	Bézier curves
	Composite Bézier curves
	Approximate conversion of Bézier curves – overview
	Degree reduction of Bézier curves
	Merging of Bézier curves

	Outline of the thesis

	Continuity constraints
	Parametric continuity constraints
	Geometric continuity constraints
	Hybrid continuity constraints

	Dual bases
	Introduction
	Construction of dual bases
	A straightforward method
	An orthonormal basis approach
	A more sophisticated method (Dn -3muDn+1)
	A new method (Dn+1 -3muDn)

	Dual Bernstein polynomials
	Connections between Bernstein and dual Bernstein bases
	Computing the inner products "426830A Bjn, Di(m,k,l)(;,)"526930B

	Gk,l-constrained degree reduction of Bézier curves
	Degree reduction of Bézier curves with prescribed boundary control points
	Computing the continuity parameters
	Computing Gk,l parameters using quadratic and nonlinear programming approach
	Computing Cp,q/Gk,l parameters by solving a system of linear equations

	Explicit formulas for the continuity parameters
	G1,1-constrained case
	C1,1/G2,2-constrained case
	C1,-/G2,1-constrained case
	C-,1/G1,2-constrained case

	Algorithms
	Auxiliary computations
	Cp,q/Gk,l-constrained degree reduction algorithms
	Gk,l-constrained degree reduction algorithm

	Examples

	Degree reduction of planar Bézier curves with box constraints
	Motivation
	Problem of degree reduction of planar Bézier curves with box constraints
	Degree reduction using quadratic programming approach
	Degree reduction using BVLS algorithm
	Solving the subproblem
	A straightforward method
	A method based on the properties of dual bases

	Examples

	Ck,l-constrained merging of Bézier curves
	Efficient subdivision of Bézier curves
	Solution and algorithm
	Examples

	Gk,l-constrained merging of Bézier curves
	Computing the continuity parameters
	Algorithms
	Gk,l-constrained merging algorithm
	Outline of the Cp,q/Gk,l-constrained merging algorithm

	Examples

	Merging of planar Bézier curves with box constraints
	Motivation
	Problem of merging of planar Bézier curves with box constraints
	Solution
	Quadratic programming with box constraints

	Examples

	Bibliography
	Index

