

Multivariate generalized Bernstein polynomials.
Identities for orthogonal polynomials of two variables

Stanisław Lewanowicz* (stanislaw.lewanowicz@ii.uni.wroc.pl) and
Paweł Woźny (pawel.wozny@ii.uni.wroc.pl)
Institute of Computer Science, University of Wrocław, ul. Joliot-Curie 15,
50-383 Wrocław, Poland

Iván Area (area@dma.uvigo.es)
Departamento de Matemática Aplicada II, E.T.S.E. Telecomunicación,
Universidade de Vigo, 36200–Vigo, Spain

Eduardo Godoy (egodoy@dma.uvigo.es)
Departamento de Matemática Aplicada II, E.T.S. Ingenieros Industriales,
Universidade de Vigo, 36200–Vigo, Spain

Abstract. We introduce multivariable generalized Bernstein polynomials

$$B_{\mathbf{k}}^n(\mathbf{x}; \omega | q) := \frac{1}{(\omega; q)_n} \left[\begin{matrix} n \\ \mathbf{k} \end{matrix} \right]_q \prod_{m=1}^{d+1} x_m^{k_m} \left(\frac{x_{m-1}}{x_m}; q \right)_{k_m} \quad (0 \leq |\mathbf{k}| \leq n),$$

of total degree $n \in \mathbb{N}$, where $\mathbf{k} = (k_1, \dots, k_d) \in \mathbb{N}_0^d$, $0 \leq k_1 + \dots + k_d \leq n$, and $\mathbf{x} = (x_1, x_2, \dots, x_d) \in \mathbb{R}^d$, depending on two parameters q and ω , which generalize the multivariate classical and discrete Bernstein polynomials. (We use the standard notation for the q -binomial coefficient, and the q -Pochhammer symbol). For $\omega = 0$, we obtain an extension of univariate q -Bernstein polynomials, introduced by Phillips (Ann. Numer. Math. 4 (1997)). Basic properties of the new polynomials are given, including recurrence relations, q -differentiation rules and de Casteljau algorithm. For the case $d = 2$, connections between $B_{\mathbf{k}}^n(\mathbf{x}; \omega | q)$ and bivariate orthogonal big q -Jacobi polynomials—introduced recently by the first two authors—are given, with the connection coefficients being expressed in terms of bivariate q -Hahn polynomials. As limiting forms of these relations, we give connections between bivariate q -Bernstein and Dunkl's (little) q -Jacobi polynomials (SIAM J. Alg. Disc. Meth. 1 (1980)), as well as between bivariate discrete Bernstein and Hahn polynomials.

Keywords: Multivariate generalized Bernstein polynomials, Multivariate q -Bernstein polynomials, Bivariate big q -Jacobi polynomials, Bivariate q -Hahn polynomials, Bivariate Hahn polynomials, Connection relations.

Mathematics Subject Classification (2000): 33C50, 33D50, 65D17

Dedicated to the memory of Luigi Gatteschi

* Corresponding author