

Dual generalized Bernstein basis

Stanisław Lewanowicz, Paweł Woźny

*Institute of Computer Science, University of Wrocław,
ul. Przesmyckiego 20, 51-151 Wrocław, Poland*

ABSTRACT. The generalized Bernstein basis in the space Π_n of polynomials of degree at most n , being an extension of the q -Bernstein basis introduced recently by G.M. Phillips, is given by the formula (see S. Lewanowicz & P. Woźny, *BIT* 44 (2004), 63–78)

$$B_i^n(x; \omega | q) := \frac{1}{(\omega; q)_n} \left[\begin{array}{c} n \\ i \end{array} \right]_q x^i (\omega x^{-1}; q)_i (x; q)_{n-i} \quad (i = 0, 1, \dots, n).$$

We give explicitly the dual basis functions $D_k^n(x; a, b, \omega | q)$ for the polynomials $B_i^n(x; \omega | q)$, in terms of big q -Jacobi polynomials $P_k(x; a, b, \omega/q; q)$, a and b being parameters; the connection coefficients are evaluations of the q -Hahn polynomials. An inverse formula – relating big q -Jacobi, dual generalized Bernstein, and dual q -Hahn polynomials – is also given. Further, an alternative formula is given, representing the dual polynomial D_j^n ($0 \leq j \leq n$) as a linear combination of $\min(j, n-j) + 1$ big q -Jacobi polynomials with shifted parameters and argument. Finally, we give a recurrence relation satisfied by D_k^n , as well as an identity which may be seen as an analogue of the extended Marsden's identity.