
Projektowanie aplikacji ADO.NET + ASP.NET

Zestaw 2

Podstawy ASP.NET

12-10-2010

Liczba punktów do zdobycia: 10/20

1. (1p) Nauczyć się dodawać, odczytywać i usuwać ciastka (HttpCookie) w kodzie po stronie
serwera. Jak wiarygodnie sprawdzić czy przeglądarka obsługuje ciastka?

2. (1p) Postudiować interfejsy obiektów Request, Server i Response. Do czego przydaje się
statyczna właściwość HttpContext.Current?

Jak z HttpContext.Current odzyskać referencję do aktualnie przetwarzanej w potoku
strony?Wskazówka: przejrzeć wszystkie składowe obiektu, poszukiwana referencja jest wprost
zapisana w jednej z nich.

3. (1p) Nauczyć się różnic między kontenerami serwerowymi Application, Session i Items.
Zademonstrować ich użycie w kodzie po stronie serwera za pomocą opakowań w pseudosingletony.
Dostęp do którego kontenera musi być dodatkowo chroniony (lock) w aksesorze dostępu
(get) i dlaczego?

4. (1p) Bez względu na sposób dostępu do danych, z kontekstu dostępu do danych zwykle
korzystamy przy pomocy jakiegoś dedykowanego obiektu (SqlConnection, LINQowy DataContext,
Hibernate’owy ISession itp).

Który kontener serwerowy jest najwłaściwszy do przechowywania takiego kontekstu dostępu
do danych (Application, Session czy Items)? Jakie skutki uboczne miałoby przechowywanie
kontekstu dostępu do danych nie w tymwłaściwym, ale w którymś z pozostałych kontenerów
(co oczywiście technicznie jest możliwe)?

Zademonstrować kod, który opakowuje kontekst dostępu do danych w pseudosingleton
przy wykorzystaniu tego właściwego kontenera.

W którym miejscu potoku przetwarzania poprawnie zwalniać zasoby kontekstu dostępu
do danych (co jest istotne zwłaszcza wtedy jeśli obiekt dostępowy implementuje interfejs
IDisposable)? Zademonstrować to zwalnianie na przykładzie.

5. (1p) Do czego służy plik app offline.htm?

6. (2p) Przećwiczyć w praktyce przesyłanie danych binarnych w obie strony. Ściślej - wykonać
aplikację, która pozwoli użytkownikowi wskazać plik lokalny na dysku i przesłać go na
serwer (formant <input type="file" ... />), a po stronie serwera zostanie wyprodukowany
i odesłany plik XML:

<opis>

<nazwa>nazwaprzesłanegopliku</nazwa>

1



<rozmiar>rozmiarprzesłanegopliku</rozmiar>

<sygnatura>sumabajtówpliku modulo 0xFFFF</sygnatura>

</opis>

Plik XML powinien być budowany dynamicznie i odesłany do klienta bez zapisywania jego
zawartości na dysku serwera. W przeglądarce użytkownika nadesłana odpowiedź powinna
spowodować podniesienie się domyślnego okna Otwórz/Zapisz/Anuluj.

7. (3) Wykorzystać obiekt sesji do następującego naiwnego rozwiązania problemu autentykacji:
w każdej stronie aplikacji w wypadku stwierdzenia w kodzie zdarzenia Page Load braku
informacji o użytkowniku w sesji, kontekst przetwarzania przekierowywany jest do strony
Login.aspx, na której po poprawnym potwierdzeniu tożsamości (login i hasło) informacja
o tożsamości zapamiętywana jest w kontenerze sesji.

Dodatkowo punkt wejścia do aplikacji powinien być poprawnie przywrócony po autentykacji
(użytkownik kieruje żądanie do którejkolwiek strony aplikacji, jest przekierowany do strony
logowania, a następnie aplikacja sama powraca do strony, od której użytkownik chciał
rozpocząć nawigację).

Uwaga! O tym jak poprawnie implementować mechanizm autentykacji i autoryzacji będziemy
rozmawiać na kolejnych wykładach. To zadanie ma wyłącznie pokazać, że referencyjne
rozwiązanie, które poznamy w przyszłości, nie jest jedynym możliwym. W praktyce nie
powinno się autentykacji opierać na sesji serwera (dlaczego?).

Wiktor Zychla

2


