
Projektowanie aplikacji ADO.NET + ASP.NET

Zestaw 5

Autentykacja, autoryzacja, własne formanty

08-11-2011

Liczba punktów do zdobycia: 10/45
Zestaw ważny do: 13-12-2011

1. (1p) Zaprezentuj w praktyce przedstawiany na wykładzie mechanizm autentykacji Windows.
Ściślej - przygotuj aplikację, w której użytkownik zostanie rozpoznany jako aktualnie
zalogowany użytkownik systemu operacyjnego. Pokaż, że potrafisz sterować dostępem
do poszczególnych zasobów aplikacji za pomocą mechanizmu autoryzacji (użytkownicy
przypisani do odpowiednich grup zabezpieczeń mają lub nie dostęp do wybranych stron).

2. (1p) Zaimplementuj i użyj we własnej aplikacji takiego dostawcę usługi uwierzytelniania
(MembershipProvider), który potwierdzi tożsamość użytkownika w bazie danych Microsoft
SQL Server, w tabeli USERS, w której zapisane będą nazwa użytkownika i SHA256 hasła.

Zbuduj formularz dodawania użytkownika, który po utworzeniu konta poprawnie zapisze
w tabeli USERS nazwę i skrót hasła.

Logowanie do aplikacji oraz dodawanie użytkownika może być oparte o formanty biblioteczne,
ale nie musi.

Czy hasła użytkowników zamieszane za pomocą SHA256 są całkowicie bezpieczne? W
jakich okolicznościach może okazać się to niewystarczające? Jak sobie z tym poradzić?

3. (1p) Poprzednie zadanie rozwiń o implementację usługi informowania o rolach, gdzie role
zapisane byłyby w tabeli ROLES, a powiązanie wiele-do-wielu użytkowników z rolami w
tabeli USERSROLES.

Dostęp do zasobów można zabezpieczyć przez wskazanie ról użytkowników którzy mogliby
do tych ról mieć dostęp. Pokaż, że można to robić zarówno dla pojedyńczych zasobów
(sekcja locationw web.config) oraz całych podfolderów (osobny, zdegenerowany web.config).

4. (1p) Jak korzystać z informacji o rolach użytkowników w aplikacji?

Pokaż, że potrafisz zablokować dostęp do podglądu i edycji wybranego wiersza ListView
dla użytkowników będących w konkretnej roli.

Na przykład pole PESEL powinien widzieć każdy, a edytować tylko użytkownik będący w
roli ADMINISTRATOR, zaś pole PENSJA powinien widzieć i edytować tylko użytkownik
w roli PLACOWA.

5. (1p) Pokaż, że potrafisz posługiwać się sekcją UserData ciastka Forms. Ściślej - napisz
takiego dostawcę usługi informowania o rolach, który listę ról użytkownika zapamięta w
sekcji UserData ciastka Forms w momencie logowania, a przy każdym żądaniu dostarczenia
listy ról będzie wydobywał je z tej sekcji.

1



Zadanie to ma ma celu oswojenie się ze strukturą ciastka forms oraz interfejsem, który
pozwala na jego tworzenie oraz na dostęp do informacji w nim zawartych (klasa FormsAuthen-
ticationTicket).

6. (1p) Udowodnij, że sposób uwierzytelniania Forms jest ogólniejszy niż Windows. Ściślej -
napisz takiego dostawcę usługi uwierzytelniania, który sprawdzi tożsamość użytkownika w
systemie operacyjnym (formalnie - we wskazanej domenie).

Wskazówka. Do potwierdzenia tożsamości użytkownika należy użyć protokołu LDAP, do

którego dostęp mamy za pomocą obiektów DirectoryEntry i DirectorySearcher. Odpowiedni

kod prawie na pewno znajdziesz na sieci. Nie wolno korzystać z bibliotecznej klasy ActiveDirectory-

MembershipProvider.

7. (1p) Utwórz własną kontrolkę użytkownika (*.ascx), Login, która będzie zawierać pola
tekstowe Nazwa użytkownika i Hasło oraz przycisk Loguj.

Po naciśnięciu przycisku kontrolka powinna przeprowadzić uwierzytelnianie użytkownika
używając skonfigurowanego dostawy usługi uwierzytelniania i w wypadku pomyślnego
uwierzytelnienia przekierowywać kontekst do innej strony lub informować aplikację podnosząc
jakieś zdarzenie.

8. (1p) Utwórz własną kontrolkę dziedzidzącą z WebControl, która w zależności od stanu
wartości HttpContext.Current.User będzie wypisywać informację ”Niezalogowany”
lubWitaj: xyz, gdzie xyz będzie nazwą użytkownika odczytaną z HttpContext.Current.User

9. (2p)Wzorując się na przykładzie z wykładu (walidator parzystości) napisać własny walidator
działający po stronie klienta PeselValidator, który będzie walidował poprawność numeru
PESEL wprowadzonego do pola tekstowego.

Uwaga! Algorytm weryfikacji poprawności numeru PESEL jest opisany w sieci. Proszę

również pamiętać o poprawnej implementacji walidacji po stronie serwera, tak aby właściwość

IsValid zwracała poprawną wartość.

Uwaga! Walidator powinien działać tak, jak każdy inny walidator, tzn. nie dopuszczać

do przesłania na serwer formularza w sytuacji niewłaściwej walidacji pola, do którego

jest doczepiony. Walidator powinien poprawnie obsługiwać typowe właściwości, takie jak

ErrorMessage czy ValidationGroup.

Wskazówka! Podobnie jak w przykładzie z wykładu głównym elementem walidatora będzie

odpowiednio skonstruowana funkcja JavaScript przywiązana do zdarzeń pola tekstowego po

stronie klienta.

Wiktor Zychla

2


