
Programowanie pod Windows

Zbiór zadań

Uwaga: zbiór zadań jest w fazie ciągłego rozwoju. Wszelkie prawa autorskie zastrzeżone. Dokument może

być rozpowszechniany wyłącznie w celach edukacyjnych, z wyłączeniem korzyści materialnych.

Wiktor Zychla
Instytut Informatyki

Uniwersytetu Wrocławskiego

Wersja 2013.03.01

c©2004-2013, Wiktor Zychla

2

Spis treści

1 Win32 Application Programming Interface 13

1.1 Elementy interfejsu użytkownika . 13
1.1.1 Potwierdzenie zamknięcia okna . 13
1.1.2 Wykresy funkcji . 13
1.1.3 Poruszające się kółko . 13
1.1.4 Okno dialogowe . 14
1.1.5 Szablon okna dialogowego . 14
1.1.6 Wybrane składniki Common Controls . 15
1.1.7 Komunikaty formatów zagnieżdżonych . 15
1.1.8 Domyślne skojarzenia powłoki . 15

1.2 Inne podsystemy Windows . 15
1.2.1 Plik tekstowy na pulpicie, powłoka . 15
1.2.2 Rozmiar okna w rejestrze . 15
1.2.3 Komunikacja międzyprocesowa . 16
1.2.4 Problem golibrody . 16
1.2.5 Statystyka połączeń TCP/UDP . 16
1.2.6 Biblioteka Url Monikers . 16
1.2.7 Wiggle . 16

1.3 Win32 Varia . 16
1.3.1 Wtyczka DSP do Winampa 2.x/5.x . 16
1.3.2 Skrypty powłoki . 17
1.3.3 Internet Explorer jako host dla aplikacji okienkowych 17
1.3.4 Informacje o systemie . 17

2 COM Component Object Model 19

2.1 Klient COM . 19
2.1.1 Klient COM aplikacji MS Office . 19

2.2 Serwer COM . 19
2.2.1 Prosty serwer COM . 19

3 .NET Framework 21

3.1 Język C# 1.0 . 21
3.1.1 Prosty algorytm . 21
3.1.2 Indeksery . 21
3.1.3 Refleksja - składowe prywatne . 22
3.1.4 Atrybuty . 22
3.1.5 Dokumentowanie kodu . 23
3.1.6 Dekompilacja kodu . 23

3.2 Rozszerzenia języka C# 2.0 . 23

3

4 SPIS TREŚCI

3.2.1 Kontenery generyczne . 23
3.2.2 Drzewo binarne . 23
3.2.3 Anonimowe delegacje Predicate, Action, Comparison, Converter 24
3.2.4 Algorytmy biblioteczne . 24

3.3 Rozszerzenia języka C# 3.0 . 24
3.3.1 Metoda rozszerzająca klasę System.String 24
3.3.2 LINQ to Objects, sortowanie, filtrowanie 24
3.3.3 LINQ to Objects, grupowanie . 25
3.3.4 LINQ to Objects, anagramy . 25
3.3.5 LINQ to Objects, agregowanie . 25
3.3.6 LINQ to Objects, Join . 25
3.3.7 LINQ to Objects, analiza logów serwera 26
3.3.8 Lista obiektów anonimowych . 26
3.3.9 Rekursywne anonimowe delegacje . 26

3.4 Rozszerzenia języka C# 4.0 . 27
3.4.1 Wydajność podsystemu DLR . 27
3.4.2 Łatwa automatyzacja w C# . 27

3.5 .NET ⇔ Win32, Platform Invoke, COM Interoperability 27
3.5.1 P/Invoke, Win32 ⇒ .NET . 28
3.5.2 P/Invoke + DLL . 28
3.5.3 P/Invoke + DLL + wskaźniki na funkcje/delegacje 28
3.5.4 COM Interop, COM ⇒ .NET, early/late binding 28
3.5.5 COM Interop, .NET ⇒ COM . 29

3.6 .NET Base Class Library . 29
3.6.1 Liczby zespolone . 30
3.6.2 Kodowanie napisów . 30
3.6.3 Własne kolekcje . 30
3.6.4 Składanie strumieni . 31
3.6.5 Prosty strumień pośredni . 31
3.6.6 Golibroda w .NET . 31
3.6.7 Protokoły sieciowe . 31
3.6.8 Własna usługa sieciowa + serializacja . 31
3.6.9 Komunikacja międzyprocesowa - MSMQ 32
3.6.10 Globalizacja . 32
3.6.11 Active Directory . 32
3.6.12 Usługa systemowa . 32
3.6.13 Zewnętrzny plik w zasobach aplikacji . 32

3.7 Biblioteka System.Windows.Forms . 33
3.7.1 Potwierdzenie zamknięcia okna . 33
3.7.2 Podsystem GDI+ . 33
3.7.3 Formant SmoothProgressBar . 33
3.7.4 Formant Grid . 33
3.7.5 Windows Media Player ActiveX . 35
3.7.6 Pomoc kontekstowa . 35

3.8 Inne zagadnienia .NET . 35
3.8.1 Wielojęzykowość .NET . 35
3.8.2 Asekwencyjność kolekcji asocjacyjnych . 35
3.8.3 Sekwencyjna generyczna kolekcja asocjacyjna 35
3.8.4 Lekser, parser, rekursja . 36

SPIS TREŚCI 5

3.8.5 Informacje o systemie w .NET . 36
3.9 Programowanie urządzeń mobilnych . 36

3.9.1 Gra planszowa . 36
3.10 eXtensible Markup Language . 37

3.10.1 XML . 37
3.10.2 XSD . 37
3.10.3 XML + XSD . 37
3.10.4 XML - serializacja . 37
3.10.5 XML - DOM . 37
3.10.6 XML - strumienie . 37
3.10.7 XML - LINQ to XML . 37
3.10.8 XML - analiza . 38
3.10.9 XML jako protokół komunikacyjny . 38

3.11 Biblioteka ADO.NET . 38
3.11.1 DataReader . 38
3.11.2 DBMS . 38
3.11.3 Data Access Layer . 39
3.11.4 Object-Relational Mapping . 39
3.11.5 LINQ to SQL . 39
3.11.6 LINQ to DataSet . 39
3.11.7 LINQ, łączenie różnych źródeł danych . 39

3.12 Biblioteka ASP.NET. ASP.NET WebServices . 39
3.12.1 Rejestr odwiedzin . 39
3.12.2 Statystyka odwiedzin . 40

3.13 Bezpieczeństwo platformy .NET . 40
3.13.1 Weryfikacja poprawności MSIL i metadanych 40
3.13.2 Polisa bezpieczeństwa aplikacji . 40
3.13.3 Silny podpis kodu aplikacji . 40

6 SPIS TREŚCI

Wprowadzenie

Szanowni Państwo!
Niniejszy zbiór zadań przeznaczony jest dla słuchaczy wykładuProgramowanie pod Win-

dows .NET, który mam przyjemność prowadzić w Instytucie Informatyki Uniwersytetu Wro-
cławskiego od roku akademickiego 2002/2003. Zbiór stanowi uzupełnienie podręcznika, pozycji
Windows oczami programisty [2], dostępnej w wersji akademickiej jako Programowanie
pod Windows.
Zadania zebrano w dwie grupy, z których pierwsza pozwala zapoznać się z podsystemami

Windows, interfejsem Win32 oraz technologią COM, druga zaś to przegląd języków, bibliotek i
technologii platformy .NET. Duża liczba i różnorodność oraz fakt, iż suma punktów za wszyst-
kie zadania przekracza maksymalną referencyjną liczbę punktów dla kryteriów punktowych (100
punktów), mają stanowić dla studenta zachętę do wybierania zadań interesujących i pouczają-
cych. Zachęcam do zachowania takich proporcji w wyborze zadań z obu grup, jakie wynikają z
ich liczności.

Wiktor Zychla
wzychla@ii.uni.wroc.pl

7

8 SPIS TREŚCI

Zestawy zadań

Zestaw 1

1. 1.1.1

2. 1.1.2

3. 1.1.3

4. 1.1.4

5. 1.1.5

6. 1.1.6

7. 1.1.7

8. 1.1.8

Zestaw 2

1. 1.2.1

2. 1.2.2

3. 1.2.3

4. 1.2.4

5. 1.2.6

6. 1.2.7

Zestaw 3

1. 1.3.1

2. 1.3.2

3. 1.3.3

4. 1.3.4

5. 2.1.1

6. 2.2.1

9

10 SPIS TREŚCI

Zestaw 4

1. 3.1.1

2. 3.1.2

3. 3.1.3

4. 3.1.4

5. 3.1.5

6. 3.1.6

7. 3.2.1

8. 3.2.2

9. 3.2.3

10. 3.2.4

11. 3.3.1

Zestaw 5

1. 3.3.2

2. 3.3.3

3. 3.3.4

4. 3.3.5

5. 3.3.6

6. 3.3.7

7. 3.3.8

8. 3.3.9

9. 3.4.1

10. 3.4.2

Zestaw 6

1. 3.5.1

2. 3.5.2

3. 3.5.3

4. 3.5.4

5. 3.5.5

SPIS TREŚCI 11

Zestaw 7

1. 3.6.1

2. 3.6.2

3. 3.6.3

4. 3.6.4

5. 3.6.5

6. 3.6.6

7. 3.6.7

8. 3.6.8

9. 3.6.9

10. 3.6.10

11. 3.6.11

12. 3.6.12

13. 3.6.13

Zestaw 8

1. 3.7.1

2. 3.7.2

3. 3.7.3

4. 3.7.4

5. 3.7.5

6. 3.7.6

7. 3.8.1

8. 3.8.2

9. 3.8.3

10. 3.8.4

11. 3.8.5

12 SPIS TREŚCI

Zestaw 9

1. 3.9.1

2. 3.10.1

3. 3.10.2

4. 3.10.3

5. 3.10.4

6. 3.10.5

7. 3.10.6

8. 3.10.7

9. 3.10.8

10. 3.10.9

Zestaw 10

1. 3.11.1

2. 3.11.2

3. 3.11.3

4. 3.11.4

5. 3.11.5

6. 3.11.6

7. 3.11.7

8. 3.12.1

9. 3.12.2

10. 3.13.1

11. 3.13.2

12. 3.13.3

Rozdział 1

Win32 Application Programming
Interface

Rozwiązanie zadań w tym rozdziale polega na napisaniu programów w języku C, przy czym w
programach wolno korzystać wyłącznie z funkcji bibliotek standardowych C oraz Win32API.
Tam gdzie to możliwe należy wybierać funkcje z Win32API zamiast ich odpowiedników z C (na
przykład przy obsłudze systemu plików czy allokacji pamięci). Do tworzenia i obsługi okien nie
wolno wykorzystywać żadnych interfejsów pośrednich (WTL, MFC, wxWidgets, GTK).

1.1 Elementy interfejsu użytkownika

1.1.1 Potwierdzenie zamknięcia okna

Napisać program, który podczas próby zamknięcia okna poprosi użytkownika o potwierdzenie
(”Czy jesteś pewien, że chcesz zakończyć program?”) i w razie odpowiedzi odmownej zrezygnuje
z zamykania okna.
Wskazówka. Przejrzeć dokumentację i znaleźć komunikat, który wysyłany jest do okna tuż

przed jego zamknięciem, a którego obsługa da możliwość zapytania użytkownika o zgodę na za-
mknięcie i ewentualne anulowanie zamknięcia.

[1p]

1.1.2 Wykresy funkcji

Napisać program, który tworzy okno i w jego obszarze roboczym rysuje wykresy funkcji f(x) =
|x| i f(x) = x2 (z osiami). Oba wykresy powinny być narysowane różnymi kolorami i różnymi
stylami pędzli.
Wykresy powinny automatycznie dopasowywać się do nowych rozmiarów okna podczas ska-

lowania okna.
[1p]

1.1.3 Poruszające się kółko

Napisać program, który w obszarze roboczym okna pokaże poruszające się i odbijające się od
ramki okna kółko.
Kółko powinno poprawnie reagować na skalowanie rozmiarów okna przez użytkownika.
[1p]

13

14 ROZDZIAŁ 1. WIN32 APPLICATION PROGRAMMING INTERFACE

Rysunek 1.1: Wygląd okna do zadania [1.1.4]

Rysunek 1.2: Informacja dla użytkownika do zadania [1.1.4]

1.1.4 Okno dialogowe

Napisać program, który odtworzy następujący wygląd okna z rysunku 1.1.
Okno zawiera dwie ramki grupujące (Group Box). Pierwsza ramka zawiera dwa pola tekstowe

(Edit Box), druga zawiera pole wyboru (Combo Box) oraz dwa przyciski stanu (Check Box).
Lista rozwijalna pola wyboru powinna być wypełniona przykładowymi nazwami.
Po wybraniu przez użytkownika przycisku Akceptuj, wybór powinien zostać zaprezentowa-

ny w oknie informacyjnym (rysunek 1.2).
Naciśnięcie przycisku Anuluj powinno zakończyć program.
Uwaga! Formanty potomne należy inicjować bezpośrednio przez CreateWindow. Komunikat

w oknie informacyjnym zależy oczywiście od danych wprowadzonych przez użytkownika na for-
mularzu głównym.
[2p]

1.1.5 Szablon okna dialogowego

Powtórzyć funkcjonalność programu z zadania [1.1.4] używając tym razem edytora zasobów i
wbudowanej w niego wizualnego funkcji wizualnej edycji szablonu okna do zbudowania interfejsu
użytkownika.
Uwaga! W przypadku tworzenia okna z szablonu zapisanego w zasobach, zmiast RegisterClass,

CreateWindow i jawnej pętli obsługi komunikatów użyć funkcji DialogBox.
[2p]

1.2. INNE PODSYSTEMY WINDOWS 15

1.1.6 Wybrane składniki Common Controls

Napisać program, który zademonstruje działanie trzech wybranych komponentów biblioteki
Common Controls (ListView, TreeView, Animate Control, Progress Bar, Status Bar, Tool Bar,
itd.). Demonstracja ma polegać na obsłudze kilku wybranych właściwości komponentów (na
przykład wypełnieniu ListView kilkoma elementami, zmianie wartości i stylu Progress Bara
itp.).
[2p]

1.1.7 Komunikaty formatów zagnieżdżonych

Napisać program, który w oknie umieści panel grupujący (Group Box), a wewnątrz niego przy-
cisk. Próba obsługi zdarzenia kliknięcia przycisku w funkcji obsługi komunikatów okna głównego
nie uda się, ponieważ odpowiedni WM COMMAND trafia do funkcji obsługi komunikatów pa-
nelu grupującego, a nie okna głównego (panel grupujący jest bezpośrednim rodzicem przycisku).
Przygotować rozwiązanie, w którym własna funkcja obsługi komunikatów panelu grupującego

przekazuje trafiający do niej WM COMMAND ”poziom wyżej”, czyli do bezpośredniego rodzica
panelu grupującego. Dzięki temu logika przetwarzania WM COMMAND będzie mogła znaleźć
w funkcji obsługi komunikatów okna głównego, a trafi tam bez względu na złożoność hierarchii
zagnieżdżonych paneli grupujących.
[1p]

1.1.8 Domyślne skojarzenia powłoki

Sprawdzić jak powłoka obsługuje typowe akcje (open, print) dla kilku typowych rozszerzeń
plików (txt, exe, doc, rtf, html).
Zarejestrować w systemie własne rozszerzenie plików, *.ppwin i skojarzyć je z przykładową

aplikacją tak, aby po wykonaniu przez powłokę akcji open lub print) wskazany dokument
otwierał się w przykładowej aplikacji lub był przez nią drukowany.
Wskazówka. Nie ma programowego sposobu na rejestrowanie skojarzeń dla rozszerzeń nazw

plików. Odpowiednia informacja znajduje się w rejestrze systemu, należy tylko sprawdzić gdzie
powinna się znajdować i jak być zbudowana.
[1p]

1.2 Inne podsystemy Windows

1.2.1 Plik tekstowy na pulpicie, powłoka

Napisać program, który na pulpicie bieżącego zalogowanego użytkownika umieści plik tekstowy
z bieżącą datą systemową. Następnie plik ten skieruje do wydruku.
Do pobrania nazwy foldera użyć funkcji SHGetFolderPath. Do skierowania dokumentu do

wydruku użyć funkcji sterujacej powłoką ShellExecute.
[1p]

1.2.2 Rozmiar okna w rejestrze

Napisać okienkowy program, który zapamięta w rejestrze systemu rozmiary swojego okna. Roz-
miary te powinny być odtwarzane przy każdym uruchomieniu i zapamiętywane przy zamykaniu
okna programu.
Zaprojektować format zapisu do rejestru. Zapisywać pod kluczem:
HKEY CURRENT USER\Software\Programowanie pod Windows\...

16 ROZDZIAŁ 1. WIN32 APPLICATION PROGRAMMING INTERFACE

[2p]

1.2.3 Komunikacja międzyprocesowa

Napisać prosty serwer WWW obsługujący minimalny pozdbiór protokołu HTTP umożliwiający
użytkownikowi przeglądarki internetowej obejrzenie zawartości przykładowej witryny.
Wskazówka: szkielet kodu serwera TCP/IP znajduje się w podręczniku. Należy go rozbudować

o obsługę protokołu komunikacyjnego, tu: HTTP. Klientem będzie przeglądarka internetowa,
która po wpisaniu adresu naszego serwera wyśle do niego żądanie - pierwszym żądaniem będzie
GET nazwazasobu. Obsługę protokołu HTTP można więc ograniczyć wyłącznie do obsługi żądań
GET - to wystarczy do nawiązania komunikacji z przeglądarką internetową.

[2p]

1.2.4 Problem golibrody

Napisać konsolowy program, który rozwiązuje klasyczny problem golibrody lub problem ”palaczy
tytoniu” za pomocą którejkolwiek z metod synchronizacji wątków udostępnianej przez Win32.
[2p]

1.2.5 Statystyka połączeń TCP/UDP

Napisać konsolowy (lub okienkowy) program do szczegółowego diagnozowania stanu połączeń
TCP lub UDP na lokalnej maszynie. Wykorzystać w tym celu funkcje GetTcpStatistics i
GetTcpTable (lubGetUdpStatistics i GetUdpTable) z biblioteki IP Helper (iphlpapi.h).
[2p]

1.2.6 Biblioteka Url Monikers

Napisać konsolowy (lub okienkowy) program do pobierania danych z sieci Internet za pomocą
funkcji UrlDownloadToFile z biblioteki Url Monikers (urlmon.h).
Podczas pobierania użytkownik powinien być informowany o postępie. W tym celu poprawnie

zaimplementować interfejs IBindStatusCallback.
Wskazówka: implementowanie interfejsu w C++ wygląda bardzo podobnie jak implemento-

wanie interfejsu w C# czy Javie. Przykłady implementacji tego konkretnego interfejsu można
znaleźć w sieci.

[2p]

1.2.7 Wiggle

Napisać prosty program OpenGL animujący w czasie rzeczywistym sześcian obracający się do-
okoła swojego środka. Podsystem OpenGL musi być inicjowany bezpośrednio z poziomu Win32,
bez użycia interfejsów pomocnicznych (AUX, GLUT).
[2p]

1.3 Win32 Varia

1.3.1 Wtyczka DSP do Winampa 2.x/5.x

Wzorując się na przykładzie z podręcznika, napisać wtyczkę DSP do Winampa 2.x realizującą
efekt zamiany lewego i prawego kanału dźwiękowego.

1.3. WIN32 VARIA 17

Uwaga! Winamp 2.x i 5.x mają ten sam interfejs programowania wtyczek. Komplet narzędzi
SDK dla Winampa należy pobrać ze strony http://www.winamp.com/
[1p]

1.3.2 Skrypty powłoki

Napisać skrypt powłoki (JScript lub VBScript), który na pulpicie bieżącego zalogowanego użyt-
kownika umieści plik tekstowy z bieżącą datą.
[1p]

1.3.3 Internet Explorer jako host dla aplikacji okienkowych

Napisać aplikację HTA (HTML Application), która w głównym oknie programu pozwoli wpisać
imię, nazwisko i datę urodzenia, a po naciśnięciu przycisku ”OK” zapisze dane do wybranego
przez użytkownika pliku tekstowego.
Dlaczego, mimo budowania interfejsu w HTML ta technologia nie może być użyta do budowy

aplikacji internetowych?
[2p]

1.3.4 Informacje o systemie

Napisać program do diagnozowania komponentów komputera i systemu operacyjnego. Raport
powinien obejmować m.in.

• Model procesora oraz częstotliwość taktowania

• Ilość pamięci operacyjnej (wolnej, całej)

• Wersję systemu operacyjnego wraz z wersją uaktualnienia

• Nazwę sieciową komputera i nazwę aktualnie zalogowanego użytkownika

• Ustawienia rozdzielczości i głębi kolorów pulpitu

• Listę drukarek podłączonych do systemu

• Obecność i numery wersji

– platformy .NET

– Internet Explorera

– Microsoft Worda

[3p]

18 ROZDZIAŁ 1. WIN32 APPLICATION PROGRAMMING INTERFACE

Rozdział 2

COM Component Object Model

Rozwiązanie zadań w tym rozdziale polega na napisaniu programów w języku C++, korzystając
z wbudowanych w Visual Studio szablonów projektów bibliotek COM.

2.1 Klient COM

2.1.1 Klient COM aplikacji MS Office

Napisać w C/C++ aplikację konsoli, która za pośrednictwem usługi COM aplikacji MS Word
otworzy nową instancję tej aplikacji, a w niej otworzy nowy dokument, do którego wstawi tekst
”Programowanie pod Windows”. Następnie dokument zostanie zapisany na dysku pod nazwą
”ppw.doc”.
[2p]

2.2 Serwer COM

2.2.1 Prosty serwer COM

Przygotować w C++ serwer COM, udostępniający funkcję int IsPrime(int n) umożliwia-
jącą sprawdzenie, czy podana liczba jest liczbą pierwszą. Funkcja powinna zwracać zero dla
argumentu będącego liczbą złożoną i dowolną niezerową wartość dla argumentu będącego liczbą
pierwszą.
Wskazówka: w Visual Studio należy rozpocząć od projektu C++/ATL Project. Następnie w

widoku Class View użyć funkcji Add/ATL COM+ 1.0 Component. Dalsze kroki postępowania
zmierzającego do zbudowania serwera COM zostaną zaprezentowane na wykładzie.
[3p]

19

20 ROZDZIAŁ 2. COM COMPONENT OBJECT MODEL

Rozdział 3

.NET Framework

Rozwiązanie zadań w tym zestawie polega na napisaniu programów w językach platformy .NET.
Jeśli nie jest to podane jawnie, sugerowanym językiem jest C#.

3.1 Język C# 1.0

3.1.1 Prosty algorytm

Napisać program, który wyznacza zbiór wszystkich liczb natualnych 1 a 100000, które są po-
dzielne zarówno przez każdą ze swoich cyfr z osobna jak i przez sumę swoich cyfr.
[1p]

3.1.2 Indeksery

Zaimplementować klasę Grid z dwoma indekserami:

• jednowymiarowym, zwracającym listę elementów zadanego wiersza tablicy, tak aby klient
klasy mógł napiasć:

...

Grid grid = new Grid(4, 4);

int[] rowdata = grid[1]; // akcesor "get"

• dwuwymiarowym, zwracającym określony element tablicy, tak aby klient klasy mógł na-
pisać:

...

Grid grid = new Grid(4, 4);

elem[2, 2] = 5; // akcesor "set"

int elem = grid[1, 4]; // akcesor "get"

Oba indeksery powinny przyjmować jako parametry liczby całkowite. Konstruktor klasy
powinien przyjmować jako parametry liczbę wierszy i liczbę kolumn siatki.
[1p]

21

22 ROZDZIAŁ 3. .NET FRAMEWORK

3.1.3 Refleksja - składowe prywatne

Napisać program, który zademonstruje możliwość dostępu z zewnątrz do prywatnych składowych
klasy.
Kod programu powinien składać się z przykładowej klasy z co najmniej jedną prywatną

metodą i właściwością. Kod kliencki powinien uzyskać dostęp do składowych prywatnych za
pomocą refleksji.
Należy ponadto porównać szybkość dostępu do składowej publicznej w zwykły sposób i za

pomocą refleksji.
Wskazówka: mierzenie czasu działania bloku kodu najprościej wykonać następująco:

DateTime Start = DateTime.Now;

/* tu blok kodu */

DateTime End = DateTime.Now;

TimeSpan Czas = Start-End;

Console.WriteLine(Czas);

Należy jedynie pamiętać o powtórzeniu bloku kodu w pętli tak długo, aż pomiar czasu będzie
miał jakikolwiek sens - w przypadku kodu wykonywanego kilka/kilkanaście milisekund powyższa
metoda zastosowana do jednokrotnie wykonanego bloku kodu zwróci po prostu 0 jako czas wyko-
nania. Przykład:

int LiczbaProb = 1000;

DateTime Start = DateTime.Now;

for (int proba=0; proba<LiczbaProb; proba++)

{

/* tu blok kodu */

DateTime End = DateTime.Now;

}

TimeSpan Czas = Start-End;

Console.WriteLine(Czas);

[1p]

3.1.4 Atrybuty

Napisać funkcję, która jako parametr przyjmuje dowolny obiekt i wyszukuje wszystkie jego
publiczne, niestatyczne metody zwracające wartość typu int i mające pustą listę parametrów.
Następnie sprośród tych metod, funkcja wywoła i wypisze na konsoli wynik wywołania

wszystkich tych funkcji, które są oznakowane atrybutem [Oznakowane].
Przykładowo, w poniższym fragmencie kodu na konsoli powinna pojawić się tylko wartość z

funkcji Bar.

public class Foo

{

[Oznakowane]

3.2. ROZSZERZENIA JĘZYKA C# 2.0 23

public int Bar()

{

return 1;

}

public int Qux()

{

return 2;

}

}

[1p]

3.1.5 Dokumentowanie kodu

Zdokumentować (przez umieszczenie odpowiednich komentarzy w kodzie) jeden dowolny pro-
gram z bieżącej sekcji.
Wygenerować dokumentację w postaci pliku XML podczas kompilacji. Użyć narzędzia Sand-

Castle Help File Builder (http://shfb.codeplex.com/) do zbudowania pomocy stylach HTML
Help i MSDN-online.
[1p]

3.1.6 Dekompilacja kodu

Napisać w C# dowolny program demonstrujący użycie klas (metod, pól, propercji, indekserów,
delegacji i zdarzeń) oraz podstawowych konstrukcji składniowych (pętle, instrukcje warunkowe,
switch) i zdekompilować go do wybranego przez siebie języka (VB.NET lub CIL) za pomocą
narzędzia IlSpy (http://ilspy.net/).
Otrzymany kod skompilować odpowiednim kompilatorem, aby otrzymać plik wynikowy. Plik

ten następnie zdekompilować na powrót do języka C#.
Porównać otrzymane w ten sposób pliki z kodem źródłowym. Jak objawiają się i z czego

wynikają różnice?
[2p]

3.2 Rozszerzenia języka C# 2.0

3.2.1 Kontenery generyczne

Porównać wydajność (dodawanie elementów, przeglądanie, usuwanie) par kontenerów: ArrayList
- List<T> oraz Hashtable - Dictionary<T,K>.
[1p]

3.2.2 Drzewo binarne

Napisać klasę BinaryTreeNode<T>, która będzie modelem dla węzła drzewa binarnego. Węzeł
powinien przechowywać informację o danej typu T oraz swoim lewym i prawym synu.
Klasa powinna zawierać dwa enumeratory, dla przechodzenia drzewa w głąb (i wszerz, za

dodatkowe punkty), zaprogramowane w dwu wariantach: z wykorzystaniem słowa kluczowego
yield i bez.
Który sposób implementacji enumeratora jest łatwiejszy? Dlaczego?

24 ROZDZIAŁ 3. .NET FRAMEWORK

[2+2p]

3.2.3 Anonimowe delegacje Predicate, Action, Comparison, Converter

Zademonstrować w działaniu metody ConvertAll, FindAll, ForEach, RemoveAll i Sort klasy
List<T> używając anonimowych delegacji o odpowiednich sygnaturach.
[1p]

3.2.4 Algorytmy biblioteczne

Wklasie ListHelper zaprogramować statyczne metody ConvertAll, FindAll, ForEach, RemoveAll
i Sort o semantyce zgodnej z odpowiednimi funkcjami z klasy List<T> i sygnaturach rozszerzo-
nych względem odpowiedników o instancję obiektu List<T> na którym mają operować.

public class ListHelper

{

public static List<TOutput> ConvertAll<T, TOutput>(

List<T> list,

Converter<T, TOutput> converter);

public static List<T> FindAll<T>(

List<T> list,

Predicate<T> match);

public static void ForEach<T>(List<T>, Action<T> action);

public static int RemoveAll<T>(

List<T> list,

Predicate<T> match);

public static void Sort<T>(

List<T> list,

Comparision<T> comparison);

}

[2p]

3.3 Rozszerzenia języka C# 3.0

3.3.1 Metoda rozszerzająca klasę System.String

Zaimplementować metodę bool IsPalindrome() rozszerzającą klasę string. Implementacja
powinna być niewrażliwa na białe znaki i znaki przestankowe występujące wewnątrz napisu ani
na wielkość liter. Klient tej metody powinien wywołać ją tak:

string s = "Kobyła ma mały bok.";

bool ispalindrome = s.IsPalindrome();

[1p]

3.3.2 LINQ to Objects, sortowanie, filtrowanie

Dany jest plik tekstowy zawierający zbiór liczb naturalnych w kolejnych liniach. Napisać wyraże-
nie LINQ, które odczyta kolejne liczby z pliku i wypisze tylko liczby większe niż 100, posortowane
malejąco.

3.3. ROZSZERZENIA JĘZYKA C# 3.0 25

from liczba in [liczby]

where ...

orderby ...

select ...

Przeformułować wyrażenie LINQ na ciąg wywołań metod LINQ to Objects:

[liczby].Where(...).OrderBy(...)

Czym różnią się parametry operatorów where/orderby od parametrów funkcji Where,
OrderBy?
[1p]

3.3.3 LINQ to Objects, grupowanie

Dany jest plik tekstowy zawierający zbiór nazwisk w kolejnych liniach.
Napisać wyrażenie LINQ, które zwróci zbiór pierwszych liter nazwisk uporządkowanych

w kolejności alfabetycznej. Na przykład dla zbioru (Kowalski, Malinowski, Krasicki, Abacki)
wynikiem powinien być zbiór (A, K, M).
Wskazówka: zgodnie z tytułem zadania użyć operatora group .. by .. into ...

[1p]

3.3.4 LINQ to Objects, anagramy

Dany jest plik tekstowy zawierający zbiór słów w kolejnych liniach.
Napisać wyrażenie LINQ, które zwróci największą w sensie liczebności grupę anagramów z

podanego zbioru.
Uwaga! Anagramami nazywamy słowa, które zawierają te same litery, tylko w innej kolejno-

sci, na przykład shore i horse.
Wskazówka: należy użyć operatora grupowania słów, przy czym kryterium grupowania powin-

no wyrażać właściwość ”normy anagramu”, czyli zbioru liter wspólnych dla grupy anagramów.

[2p]

3.3.5 LINQ to Objects, agregowanie

Napisać wyrażenie LINQ, które dla zadanego foldera wyznaczy sumę długości plików znajdują-
cych się w tym folderze.
Do zbudowania sumy długości plików użyć funkcji Aggregate. Listę plików w zadanym fol-

derze wydobyć za pomocą odpowiednich metod z przestrzeni nazw System.IO.
[2p]

3.3.6 LINQ to Objects, Join

Dane są dwa pliki tekstowe, pierwszy zawierający zbiór danych osobowych postaci (Imię, Na-
zwisko, PESEL), drugi postaci (PESEL, NumerKonta). Kolejność danych w zbiorach jest przy-
padkowa.
Napisać wyrażenie LINQ, które połączy oba zbiory danych i zbuduje zbiór danych zawie-

rający rekordy postaci (Imię, Nazwisko, PESEL, NumerKonta). Do połączenia danych należy
użyć operatora join.
[1p]

26 ROZDZIAŁ 3. .NET FRAMEWORK

3.3.7 LINQ to Objects, analiza logów serwera

Rejestr zdarzeń serwera IIS 5.5 ma postać pliku tekstowego, w którym każda linia ma postać:

08:55:36 192.168.0.1 GET /TheApplication/WebResource.axd 200

gdzie poszczególne wartości oznaczają czas, adres klienta, rodzaj żądania HTTP, nazwę za-
sobu oraz status odpowiedzi.
Napisać aplikację która za pomocą jednego (lub wielu) wyrażeń LINQ wydobędzie z przy-

kładowego rejestru zdarzeń IIS listę adresów IP trzech klientów, którzy skierowali do serwera
aplikacji największą liczbę żądań.
Wynikiem działania programu powinien być przykładowy raport postaci:

12.34.56.78 143

23.45.67.89 113

123.245.167.289 89

gdzie pierwsza kolumna oznacza adres klienta, a druga liczbę zarejestrowanych żądań.
[2p]

3.3.8 Lista obiektów anonimowych

Listy generyczne ukonkretnieniamy typem elementów:

List<int> listInt;

List<string> listString;...

Z drugiej strony, w C# 3.0 mamy typy anonimowe, które nie są nigdy jawnie nazwane:

var item = new { Field1 = "The value", Field2 = 5 };

Console.WriteLine(item.Field1);

Czy możliwe jest zadeklarowanie i korzystanie z listy generycznej elementów typu anonimo-
wego?

var item = new { Field1 = "The value", Field2 = 5; };

List<?> theList = ?

W powyższym przykładzie, jak utworzyć listę generyczną, na której znalazłby się element
item w taki sposób, by móc następnie do niej dodawać nowe obiekty takiego samego typu?
Obiekty typu anonimowego mają ten sam typ, jesli mają tę samą liczbę składowych tego

samego typu w tej samej kolejnosci.
[1p]

3.3.9 Rekursywne anonimowe delegacje

Cechą charakterystyczną anonimowych delegacji, bez względu na to czy zdefiniowano je przy
użyciu słowa kluczowego delegate, czy też raczej jako lambda wyrażenia, jest brak ”nazwy”,
do której można odwołać się w innym miejscu kodu.
Zadanie polega na zaproponowaniu takiego tworzenia anonimowych delegacji, żeby w jed-

nym wyrażeniu możliwa była rekursja. W szczególności, poniższy fragment kodu powinien się
kompilować i zwracać wynik zgodny ze specyfikacją.

3.4. ROZSZERZENIA JĘZYKA C# 4.0 27

List<int> list = new List<int>() { 1,2,3,4,5 };

foreach (var item in

{

list.Select(i => [....]))

Console.WriteLine(item);

}

W powyższym fragmencie kodu, puste miejsce ([....]) należy zastąpić definicją ciała anoni-
mowej delegacji określonej rekursywnie:

f(i) =

{

1 i ¬ 2
f(i− 1) ∗ f(i− 2) i > 2

[2p]

3.4 Rozszerzenia języka C# 4.0

3.4.1 Wydajność podsystemu DLR

Przeprowadzić testy porównawcze kodu, w którym metoda będzie miała parametr raz typu
konkretnego, a drugi raz - dynamicznego. Jak bardzo wolniejsze jest wykonywanie kodu dyna-
micznego w tym konkretnym przypadku?

int Foo(int x, int y)

{

// jakieś obliczenia na x i y

}

dynamic Foo(dynamic x, dynamic y)

{

// te same obliczenia na x i y

}

[1p]

3.4.2 Łatwa automatyzacja w C#

Napisać w C# aplikację konsoli, która za pośrednictwem usługi COM aplikacji MS Word otwo-
rzy nową instancję tej aplikacji, a w niej otworzy nowy dokument, do którego wstawi tekst
”Programowanie pod Windows”. Następnie dokument zostanie zapisany na dysku pod nazwą
”ppw.doc”.
[1p]

3.5 .NET ⇔ Win32, Platform Invoke, COM Interoperability

Możliwości platformy .NET byłyby mocno ograniczone, gdyby niemożliwa była współpraca z
kodem niezarządzanym. Podobnie jednak jak istnieją dwa różne typy niezarządzanych biblio-
tek, bibilioteki natywne i biblioteki COM, tak istnieją dwa różne mechanizmy do współpracy z

28 ROZDZIAŁ 3. .NET FRAMEWORK

nimi, Platform Invoke do konsumpcji bibliotek natywnych oraz COM Interoperability do
konsumpcji i produkcji usług COM.
Współpraca z już istniejącym kodem niezarządzanym oznacza tak naprawdę możliwość stop-

niowego wprowadzania platformy .NET do już istniejących projektów, bez konieczności kosz-
townego jednorazowego przenoszenia ich do .NET w całości. To również szansa na wspołpracę
.NET zarówno z technologiami, które z jakichś powodów nigdy nie zostaną przeniesione do kodu
zarządzanego jak i z innymi technologiami przemysłowymi.

3.5.1 P/Invoke, Win32 ⇒ .NET

Napisać w C# program, w którym zostanie wywołana funkcja Win32 GetUserName, a jej wynik
zostanie wyprowadzony w oknie informacyjnym, wywołanym przez funkcję Win32 MessageBox.
Wskazówka: użyć atrybutów DllImport, zadeklarować obie funkcje jako extern.

[1p]

3.5.2 P/Invoke + DLL

Napisać w języku C bibliotekę natywną, która udostępnia funkcję int IsPrimeC, sprawdzającą
czy podana 32-bitowa liczba jest pierwsza.
Napisać program w C#, który wywoła tę funkcję z parametrem podanym przez użytkownika

z konsoli.
[2p]

3.5.3 P/Invoke + DLL + wskaźniki na funkcje/delegacje

Napisać w języku C bibliotekę natywną, która udostępnia funkcję int ExecuteC przyjmującą
dwa parametry: 32-bitową wartość n i wskaźnik na funkcję o sygnaturze int f(int). Funkcja
Execute jako wynik powinna zwracać wartość f(n).
Napisać program w C#, który oprócz funkcji Main będzie zawierał funkcję int IsPrimeCs i

który użyje funkcji ExecuteC (zastosowanej do funkcji IsPrimeCs) do sprawdzenia czy podana
przez użytkownika z konsoli liczba jest pierwsza.
Czy możliwe było przeniesienie kodu funkcji IsPrimeC z poprzedniego zadania jako funkcji

IsPrimeCs?
[2p]

3.5.4 COM Interop, COM ⇒ .NET, early/late binding

To zadanie składa się z 3 części:

1. Napisać bibilotekę COM, która będzie zawierała klasę PrimeTester, a w niej metodę
int IsPrime. Napisać skrypt powłoki, w którym ta metoda zostanie wywołana, a wynik
pokazany w oknie informacyjnym.

Wskazówka: tworzenie bibliotek COM zostało omówione na wykładzie. Zastosować zapro-
ponowaną tam metodę: projekt C++ typu ATL Library, do niego dodana klasa ATL
COM+ 1.0 Component.

2. Napisać program w C#, w którym zostanie wywołana funkcja IsPrime z poprzedniego
zadania. Użyć klasy opakowującej (utworzonej automatycznie lub ręcznie).

3. Napisać program w C#, w którym zostanie wywołana funkcja IsPrime z poprzedniego
zadania. Zamiast klasy opakowującej użyć refleksji.

3.6. .NET BASE CLASS LIBRARY 29

Jakie są wady i zalety wczesnego i późnego wiązania (łatwość użycia, bezpieczne typowanie)?
Czy użycie wczesnego wiązania jest zawsze możliwe?
Wskazówka: nauczyć się korzystać z regsvr32.exe do rejestrowania i wyrejestrowywania

komponentów COM. Nauczyć się korzystać z tlbimp.exe do tworzenia klas .NET opakowujących
klasy COM.

[3p]

3.5.5 COM Interop, .NET ⇒ COM

Napisać w C# bibliotekę, która będzie zawierała klasę PrimeTesterCS, a w niej metodę int
IsPrime. Zarejestrować tę bibliotekę jak bibliotekę COM. Napisać w C++ niezarządzanego
klienta COM, zwykłą aplikację konsoli, która skorzysta z tej biblioteki.
Jakie warunki muszą być spełnione, aby klasa .NET mogła być zarejestrowana jako biblioteka

COM?
Wskazówki:

1. Nauczyć się korzystać z atrybutu GuidAttribute. Dlaczego warto użyć go do oznaczenia
klasy PrimeTesterCS? Co stałoby się, gdyby nie został on użyty?

2. Nauczyć się korzystać z sn.exe do tworzenia plików z sygnaturami cyfrowymi. Silnie cyfro-
wo osygnować bibliotekę, umieszczając odpowiedni atrybut w AssemblyInfo.cs. Dlaczego
trzeba silnie sygnować biblioteki przeznaczone do COM Interop?

3. Nauczyć się korzystać z gacutil.exe do zarządzania GAC. Dodać bibliotekę do GAC.

4. Nauczyć się korzystać z regasm.exe do rejstrowania bibliotek .NET jako komponentów
COM. Przy okazji obejrzeć efekt działania regasm.exe z parametrem /regfile. Zareje-
strować bibliotekę dla COM Interop.

5. Nauczyć się korzystać z tlbexp.exe do eksportowania informacji z bibliotek .NET do
współpracy z COM. Dlaczego trzeba eksportować informacje o typach do pliku *.tlb (Ty-
peLiB)?

6. Nauczyć się korzystać z dyrektywy #import do tworzenia klientów COM w niezarządzanym
C++. Dlaczego dyrektywy tej należy użyć wskazując jako parametr ścieżkę do pliku *.tlb,
a nie do biblioteki *.dll?

Uwaga! Ze względu na pewną trudność zadania, za częściowe rozwiązania będą wyjątkowo
przyznawane punkty pośrednie (między 1 a 4).

[5p]

3.6 .NET Base Class Library

Biblioteka standardowa platformy .NET zawiera komplet funkcji do komunikacji z usługami
systemu operacyjnego Windows. Ponieważ w przyszłych wersjach systemu operacyjnego Win-
dows interfejs BCL ma szansę stać się natywnym interfejsem programowania Windows, warto
szczegółowo zapoznać się z jego możliwościami.

30 ROZDZIAŁ 3. .NET FRAMEWORK

3.6.1 Liczby zespolone

Napisać klasę do obsługi liczb zespolonych. Dodać odpowiednie konstruktory, przeciążyć odpo-
wiednie operatory. Porównać wydajność obliczeń z użyciem zaprojektowanej klasy z obliczeniami
przy użyciu szablonu complex z C++ (napisać podobny kawałek kodu z przykładowymi obli-
czeniami i porównać czas wykonania).
Rozszerzyć tę klasę o własne formatowane. Ściślej, zaimplementować interfejs IFormattable

i obsługiwać dwa rodzaje formatowania:

• domyślne (brak formatowania lub d) powinno dawać wynik a+ bi

• wektorowe (format w) powinno dawać wynik [a, b].

Przykładowy kawałek kodu:

Complex z = new Complex(4, 3);

Console.WriteLine(String.Format("{0}", z));

Console.WriteLine(String.Format("{0:d}", z));

Console.WriteLine(String.Format("{0:w}", z));

powinien dać wynik

4+3i

4+3i

[4,3]

[1p]

3.6.2 Kodowanie napisów

Napisać program do konwersji kodowania plików tekstowych.
Program powinien przyjmować jako parametry: nazwę pliku wejściowego i wyjściowego oraz

kodowanie wejściowe i wyjściowe.
Przykładowe wywołanie programu:

encoding-converter.exe in.txt out.txt windows-1250 iso-8859-2

oznacza przekodowanie pliku in.txt w kodowaniu windows-1250 do pliku out.txt w kodowa-
niu iso-8859-2.
[1p]

3.6.3 Własne kolekcje

Zaimplementować niegeneryczną kolekcję Set działającą jak zbiór, odrzucający duplikaty ele-
mentów.
Wskazówka: są trzy możliwości - albo dziedziczenie jakiejś kolekcji bibliotecznej, albo zaimple-

mentowanie własnej kolekcji, która wewnętrznie będzie wykorzystywała jakąś kolekcję bibliotecz-
ną, wreszcie zaimplementowanie własnej kolekcji nie dziedziczącej z żadnej kolekcji bibliotecznej
ani nie wykorzystującej wewnętrznie żadnej kolekcji bibliotecznej. Ta ostatnia możliwość ma nie-
wielki sens - należy uczyć się korzystania z biblioteki standardowej i wykorzystywać jej kompo-
nenty we własnym kodzie, a nie wyważać otwarte drzwi implementując już istniejące mechanizmy
samemu.
[1p]

3.6. .NET BASE CLASS LIBRARY 31

3.6.4 Składanie strumieni

Napisać program, który zawartość wskazanego pliku tekstowego zapisze do zaszyfrowanego
wybranym algorytmem skompresowanego strumienia GZip.
Napisać kolejny program, który odszyfruje wskazany strumień GZip.
[1p]

3.6.5 Prosty strumień pośredni

Zaimplementować klasę strumienia NegStream, który będzie działał jak strumień pośredni (wy-
maganym parametrem konstruktora będzie inny strumień, na którym operował będzie NegStream
przy czym odczytując i zapisując dane będzie negował poszczególne bity danych. Przykład uży-
cia:

FileStream fileToWrite = File.Create(...);

NegSteram negToWrite = new NegStream(fileToWrite);

negToWrite.Write(...);

FileStream fileToRead = File.Open(...);

NegStream negToRead = new NegStream(fileToRead);

negToRead.Read(...);

[1p]

3.6.6 Golibroda w .NET

Napisać konsolowy program, który rozwiązuje klasyczny problem golibrody lub problem ”palaczy
tytoniu” za pomocą którejkolwiek z metod synchronizacji wątków udostępnianej przez .NET
BCL.
[2p]

3.6.7 Protokoły sieciowe

Zademonstrować działanie klas FtpWebRequest, HttpWebRequest, HttpListener, TcpListener,
TcpClient, SmtpClient.
[1p]

3.6.8 Własna usługa sieciowa + serializacja

Problem obiektowych systemów rozproszonych polega na konieczności przesyłania obiektów mię-
dzy odległymi platormami.
Zademonstrować możliwość serializowania obiektów po stronie serwera, przesyłania ich za

pomocą protokołu TCP do klienta (używając do tego celu TcpClient i TcpListener) i odtwa-
rzania ich stanu u klienta przez deserializację.
Która metoda serializacji jest do tego celu najlepsza, a która najgorsza?
[2p]

32 ROZDZIAŁ 3. .NET FRAMEWORK

3.6.9 Komunikacja międzyprocesowa - MSMQ

Korzystając z MSMQ (System.Messaging) utworzyć dwukomponentowy system, w którym je-
den z komponentów będzie co pewien czas tworzył dużą liczbę komunikatów, a drugi komponent
będzie regularnie opróżniał kolejkę komunikatów, wykonując dla każdego z nich jakąś kilkuse-
kundową akcję.
[2p]

3.6.10 Globalizacja

Napisać program, który korzystając z informacji z odpowiedniej instancji obiektu CultureInfo
wypisze pełne i skrótowe nazwy miesięcy i dni tygodnia oraz bieżącą datę w językach: angielskim,
niemieckim, francuskim, rosyjskim, arabskim, czeskim i polskim.
[1p]

3.6.11 Active Directory

Używając obiektów DirectoryEntry i DirectorySearcher znaleźć za pomocą protokołu LDAP
(Lightweight Directory Access Protocol) użytkowników (imię, nazwisko, e-mail) usługi katalo-
gowej.
Zrobić to samo za pomocą obiektu PrincipalSearcher.
Który sposób dostępu do usługi katalogowej jest łatwiejszy?
Uwaga! Usługi katalogowe są dostępne w naszej instytutowej sieci lokalnej, a co za tym idzie

- napisany kod łatwo sprawdzić. Alternatywnie, można posłużyć się jakąś lekką implementacją,
na przykład OpenLDAP czy OpenDS.

[2p]

3.6.12 Usługa systemowa

Napisać usługę dla systemu NT, która będzie co minutę wysyłać listę uruchomionych aplikacji na
pewien ustalny adres e-mail. Dodatkowo, każdy wysłany komunikat powinien być odnotowany
w systemowym rejestrze zdarzeń (Event Log).
Uwaga! Po skompilowaniu usługa musi zostać zarejestrowana w systemie za pomocą programu

installutil.exe. Zarządzanie usługami odbywa się z poziomu panelu Zarządzanie kompu-
terem, sekcja Usługi i aplikacje.

[2p]

3.6.13 Zewnętrzny plik w zasobach aplikacji

Umieścić dowolny plik w zasobach aplikacji (w projekcie plik powinien mieć właściwość Embed-
ded Resource). Następnie napisać klasę, która po podaniu nazwy zasobu umożliwi wydobycie
pliku z zasobów zestawu.

ResourceHelper Helper = new ResourceHelper(Assembly.GetExecutingAssembly());

Stream PlikzZasobow = Helper.RetrieveResource("dane.xml");

[1p]

3.7. BIBLIOTEKA SYSTEM.WINDOWS.FORMS 33

Rysunek 3.1: Przykładowy SmoothProgressBar

3.7 Biblioteka System.Windows.Forms

3.7.1 Potwierdzenie zamknięcia okna

Napisać program, który podczas próby zamknięcia okna poprosi użytkownika o potwierdzenie
(Czy jesteś pewien, że chcesz zakończyć program?) i w razie odpowiedzi odmownej zrezygnuje z
zamykania okna.
Uwaga! W bibliotece System.Windows.Forms zaprojektowano do tego celu właściwe zdarzenie.

Za wersję, która do tego celu obsługuje odpowiedni komunikat będą przyznawane punkty ujemne!

[1p]

3.7.2 Podsystem GDI+

Przedstawiony w skrypcie program rysujący w oknie bieżący czas przerobić na wzór zegarka
systemowego Windows, to znaczy tak, żeby bieżąca godzina była przedstawiana na tarczy zegara
analogowego a nie cyfrowego.
Wykorzystać funkcje do rysowania z GDI+.
[2p]

3.7.3 Formant SmoothProgressBar

Zaimplementować własny komponent SmoothProgressBar, który będzie imitować zachowanie
standardowego komponentu ProgressBar (pasek postępu).
Komponent powinien mieć co najmniej 3 propercje: Min, Max i Value, pozwalające okre-

ślić odpowiednio minimalną, maksymalną i bieżącą wartość paska postępu. Mając te informacje,
SmoothProgressBarw zdarzeniu Paint powinien rysować gładki (w przeciwieństwie do oryginal-
nego, który jest złożony z ”kafelków”) pasek postępu o odpowiedniej długości (według zadanych
proporcji).
[1p]

3.7.4 Formant Grid

Zaimplementować własny komponent Grid, który będzie udostępniał funkcjonalność siatki.
Poszczególne pola siatki powinny być reprezentowane przez obiekty typu GridCell.
Interfejs klasy GridCell:

Color BackColor { get; set; }

Color ForeColor { get; set; }

Font Font { get; set; }

34 ROZDZIAŁ 3. .NET FRAMEWORK

string Text { get; set; }

int Width { get; set; }

int Height { get; set; }

Size GetRequiredSize(Graphics g);

Interfejs klasy Grid:

Color CellBackColor { get; set; }

Color CellForeColor { get; set; }

Font Font { get; set; }

int Rows{ get; }

int Cols{ get; }

GridCell this[int x, int y] { get; }

GridCell CellUnderMouse { get; }

void Redim(int x, int y);

void Clear();

void AutosizeCells();

Przykładowy kod klienta:

class TestForm : Form

{

...

private Grid grid;

void InitializeComponent()

{

...

grid = new Grid();

grid.Size = new Size(250, 100);

grid.Location = new Point(0, 0);

grid.Font = new Font("Tahoma", 12);

this.Controls.Add(grid);

}

void SetupGrid()

{

int R = 10, C = 10;

grid.Redim(R, C);

for (int r=0; r<R; r++)

for (int c=0; c<C; c++)

{

grid[r,c].Font = new Font("Tahoma", r+c+6);

grid[r,c].BackColor = Color.Yellow;

grid[r,c].Text = string.Format("[{0},{1}]", r,c);

}

}

3.8. INNE ZAGADNIENIA .NET 35

[3p]

3.7.5 Windows Media Player ActiveX

Napisać program, który użyje techniki hostowania w aplikacjach .NET formantów ActiveX i
udostępni użytkownikowi formant Windows Media Player.
Udostępniony formant powinien umożliwiać otwieranie i odtwarzanie dowolnych plików mul-

timedialnych oraz przerywanie odtwarzania na życzenie użytkownika.
[1p]

3.7.6 Pomoc kontekstowa

W dowolny sposób przygotować plik pomocy kontekstowej w formacie CHM.
Następnie przykładową aplikację rozszerzyć o obsługę pomocy kontekstowej. Należy pokazać,

że dla różnych formantów interfejsu użytkownika, przywołanie pomocy kontekstowej przywołuje
właściwy temat pliku pomocy.
Wskazówka: do wiązania formantów z tematami pomocy można użyć bibliotecznego kompo-

nentu HelpProvider lub jego alternatyw w rodzaju

http://netpl.blogspot.com/2007/08/context-help-made-easy-reloaded.html.
[2p]

3.8 Inne zagadnienia .NET

3.8.1 Wielojęzykowość .NET

Napisać program złożony z co najmniej 2 zestawów (assembly), z których co najmniej jeden
będzie napisany w innym języku niż C#.
[1p]

3.8.2 Asekwencyjność kolekcji asocjacyjnych

Wykazać (pisząc odpowiedni program), że zarówno Hashtable jak i Dictionary<T,K> nie są
kolekcjami sekwencyjnymi, czyli nie zachowują kolejności umieszczanych w nich elementów.
[1p]

3.8.3 Sekwencyjna generyczna kolekcja asocjacyjna

Zaimplementować generyczną kolekcję asocjacyjną, która będzie miała własność sekwencyjności,
tzn. przeglądanie kolekcji Keys i Values zwróci elementy w kolejności w jakiej były do kolekcji
dodawane.
Wskazówka: generyczna kolekcja asocjacyjna musi implementować interfejs IDictionary<T,K>.

Zarówno same elementy jak i ich kolejność zapamiętać w pomocniczych kolekcjach wewnętrznych
(jakich?).

[2p]

36 ROZDZIAŁ 3. .NET FRAMEWORK

3.8.4 Lekser, parser, rekursja

Napisać program wykonujący symboliczne obliczanie pochodnej. Wykorzystać rekurencyjne wzo-
ry:

(f + g)′ = f ′ + g′

(f − g)′ = f ′ − g′

(fg)′ = fg′ + f ′g

(
f

g
)′ =

f ′g − fg′

g2

(axn)′ = naxn−1

Program powinien z linii poleceń przyjmować wyrażenie, które następnie należy sparsować i
pokazać wynik. Analizę leksykalną i składniową oprzeć na dowolnej bibliotece do automatycznego
tworzenia lekserów i paserów, np:

• CSTools (http://cis.paisley.ac.uk/crow-ci0)

• GOLD Parser (http://www.devincook.com/GOLDParser/index.htm)

• ANTLR (http://www.antlr.org/)

[3p]

3.8.5 Informacje o systemie w .NET

Napisać program do diagnozowania komponentów komputera i systemu operacyjnego. Raport
powinien obejmować m.in.

• Model procesora oraz częstotliwość taktowania

• Ilość pamięci operacyjnej (wolnej, całej)

• Wersję systemu operacyjnego wraz z wersją uaktualnienia i wersją językową

• Numer wersji środowiska uruchomieniowego, którym kompilowano program

• Numer wersji środowiska uruchomieniowego, które nadzoruje wykonanie bieżącego progra-
mu

• Nazwę sieciową komputera i nazwę aktualnie zalogowanego użytkownika

• Ustawienia rozdzielczości i głębi kolorów pulpitu

• Listę drukarek podłączonych do systemu

• Numery wersji aplikacji

– Internet Explorera

– Microsoft Worda

[3p]

3.9 Programowanie urządzeń mobilnych

3.9.1 Gra planszowa

Napisać program, który pozwala dwóm użytkownikom na rozegranie partii dowolnej gry plan-
szowej (kółko-krzyżyk, warcaby, Othello, Link 5) na urządzeniu mobilnym.
[5p]

3.10. EXTENSIBLE MARKUP LANGUAGE 37

3.10 eXtensible Markup Language

Poniższe problemy skomponowano w sposób maksymalnie atomowy, nic nie stoi jednak na prze-
szkodzie aby kilka kolejnych powiązanych zadań połączyć w jednej większej aplikacji.

3.10.1 XML

Zaprojektować prostą strukturę XML do przechowywania danych o studentach. Każdy student
reprezentowany jest co najmniej przez podstawowy zbiór atrybutów osobowych, ma dwa adresy
(stały i tymczasowy) oraz listę zajęć na które uczęszcza wraz z ocenami.
[1p]

3.10.2 XSD

Schemat struktury z poprzedniego zadania wyrazić w postaci XSD. Zadbać o poprawne opisane
reguł walidacji zakresu danych (pewne dane mogą być opcjonalne) i ich zawartości (pewne dane
mogą przyjmować wartości o konkretnym formacie).
[1p]

3.10.3 XML + XSD

Napisać program, który używa zaprojektowanego w poprzednim zadaniu schematu XSD do
walidacji wskazanych przez użytkownika plików XML i raportuje ewentualne niezgodności.
[1p]

3.10.4 XML - serializacja

Napisać prostego klienta struktury XML z zadania 3.10.3, który pliki XML czyta i zapisuje
mechanizmem serializacji do struktur danych zamodelowanych odpowiednimi atrybutami.
[1p]

3.10.5 XML - DOM

Napisać prostego klienta struktury XML z zadania 3.10.3, który pliki XML czyta i zapisuje za
pomocą modelu DOM (XmlDocument).
[1p]

3.10.6 XML - strumienie

Napisać prostego klienta struktury XML z zadania 3.10.3, który pliki XML czyta i zapisuje za
pomocą mechanizmów strumieniowych (XmlTextReader, XmlTextWriter).
[1p]

3.10.7 XML - LINQ to XML

Napisać wyrażenie LINQ to XML, które z dokumentu XML z poprzednich zadań wybierze dane
osobowe studentów o nazwiskach rozpoczynających się na wskazaną literę (wybór litery powinien
być możliwy jakkolwiek bez rekompilacji programu).
[1p]

38 ROZDZIAŁ 3. .NET FRAMEWORK

3.10.8 XML - analiza

Porównać trzy metody obsługi XML z poprzednich zadań. Porównanie powinno uwzględniać:

1. czas odczytu/zapisu

2. łatwość implementacji odczytu/zapisu

3. podatność na konserwację (np. ewolucję struktury)

Ponadto rozważyć model aplikacji, w której nie ma żadnych pośrednich struktur danych w
których przechowywane byłyby dane z XML, a warstwa logiki biznesowej korzysta bezpośrednio
ze struktury XML przechowywanej w pamięci na przykład w obiekcie DOM.
Rozwiązanie zadania powinno mieć formę pisemną i nie powinno przekraczać 150 słów.
[1p]

3.10.9 XML jako protokół komunikacyjny

Napisać prostego okienkowego klienta protokołu RSS (w dowolnej wersji).
Klient powinien nawiązywać połączenie sieciowe do wskazanego źródła danych i udostępniać

listę publikowanych informacji. Wybór linka przez użytkownika powinien powodować pobranie
zawartości wskazanego artykułu i zaprezentowanie go użytkownikowi w uruchomionej z boku
nowej instancji przeglądarki internetowej lub ([+1p]) w kontrolce ActiveX Internet Explorera
hostowanej w obrębie aplikacji.
Uwaga! Do połączeń HTTP użyć gotowych klas z przestrzeni nazw System.Net.
Uwaga! Mechanizm hostowania kontrolki IE omówiony był na wykładzie.
[2+1p]

3.11 Biblioteka ADO.NET

Bibiloteka ADO.NET udostępnia spójny interfejs do obsługi różnych rodzajów źródeł danych.
Informacje o właściwym inicjowaniu parametrów połączenia (ConnectionString) powinny być
oczywiście dostępne w dokumentacji źródła danych, jednak dla typowych źródeł danych para-
metry te są ogólnie znane (np. http://www.connectionstrings.com).

3.11.1 DataReader

Przygotować arkusz Excela zawierający dane osobowe (kilka wybranych atrybutów) przykłado-
wej grupy studentów.
Połączyć się do arkusza odpowiednio zainicjowanym połączeniem OleDb (OleDbConnection),

przeczytać zbiór rekordów za pomocą DataReadera (OleDbDataReader) i pokazać je w ListView.
[1p]

3.11.2 DBMS

Uwaga! Tego zadania nie wolno oddawać samodzielnie, tylko w połączeniu z którymś
z następnych zadań, do których ono się odnosi.
Przygotować bazę danych Micosoft SQL Server zawierającą dane osobowe i adresy przykła-

dowej grupy studentów.
Model bazy danych zawiera dwie tabele, tabelę STUDENCI z polami Imię, Nazwisko, DataUro-

dzenia i PESEL oraz tabelę ADRESY z polami Miejscowość, KodPocztowy, Poczta, NumerDomu.
Tabele STUDENCI i ADRESY połączone są relacją jeden-do-wielu.
[1p]

3.12. BIBLIOTEKA ASP.NET. ASP.NET WEBSERVICES 39

3.11.3 Data Access Layer

Napisać prostą aplikację okienkową, która udostępnia dane z bazy z poprzedniego zadania użyt-
kownikowi w trybie do odczytu.
Wybrać dowolny wzorzec obsługi danych po stronie aplikacji klienckiej - dane odczytywać

do lokalnych struktur i odsyłać odpowiednie zapytania lub użyć DataAdapterów i DataSetów
powiązanych z DataGrid.
[2p]

3.11.4 Object-Relational Mapping

Zapoznać się z dowolną implementacją ORM (NHibernate) dla platformy .NET i zademonstro-
wać jej działanie na bazie danych z poprzednich zadań.
[2p]

3.11.5 LINQ to SQL

Zbudować model obiektowy bazy danych z poprzednich zadań za pomocą narzędzia sqlmetal.exe.
Pokazać w jaki sposób za pomocą LINQ to SQL można dodawać, modyfikować i usuwać dane
w bazie danych.
Pokazać w jaki sposób LINQ to SQL tłumaczy kwerendy obiektowe na zapytania SQL.
[1p]

3.11.6 LINQ to DataSet

Przygotować arkusz Excela zawierający skoroszyt z dwiema kolumnami danych: PESEL i Nu-
merKonta.
Pokazać w jaki sposób można przeglądać dane zapisane w skoroszycie za pomocą mechanizmu

LINQ to DataSet. Ściślej - dane ze skoroszytu wczytać do obiektu DataSet za pomocą mecha-
nizmu wykorzystanego w zadaniu 3.11.1, a wyrażenie LINQ odnosić do napełnionej struktury
DataSet.
[1p]

3.11.7 LINQ, łączenie różnych źródeł danych

Napisać wyrażenie LINQ, które połączy dane osobowe z bazy danych z zadania 3.11.2 z danymi
ze skoroszytu z zadania 3.11.6.
Ściślej - użyć klauzuli join do połączenia danych osobowych z bazy danych z danymi o

kontach ze skoroszytu. Polem łączącym jest pole PESEL.
[2p]

3.12 Biblioteka ASP.NET. ASP.NET WebServices

3.12.1 Rejestr odwiedzin

Przygotować stronę, która każde odwiedziny zarejestruje w pliku tekstowym, zapisując datę i
numer IP komputera klienta.
[1p]

40 ROZDZIAŁ 3. .NET FRAMEWORK

3.12.2 Statystyka odwiedzin

Przygotować stronę, która udostępni statystykę rejestru odwiedzin z poprzedniego zadania. Sta-
tystyka powinna zawierać numery IP uporządkowane według liczby połączeń, przy każdym nu-
merze IP powinna znajdować się liczba połączeń oraz data ostatniego połączenia.
[2p]

3.13 Bezpieczeństwo platformy .NET

3.13.1 Weryfikacja poprawności MSIL i metadanych

Zdekompilować prosty program napisany w C# do MSIL i zmodyfikować kod tak, aby któraś z
funkcji powodowała nadmiar/niedomiar stosu. Skompilować program za pomocą ildasm.exe i
uruchomić.
Obejrzeć szczegółowy raport diagnostyczny narzędzia PEVerify.exe.
(Dodatkowy punkt) Czy i jak wykrywana jest niezgodność głębokości/typów wartości na

stosie dla pętli?
[2+1p]

3.13.2 Polisa bezpieczeństwa aplikacji

Korzystając z narzędzia konfiguracyjnego platformy .NET zdefiniować nową grupę kodu (Co-
de Groups) dla bieżącego użytkownika, dla której regułą przynależności będzie lokalizacja w
systemie plików (np. C:/Sandbox), następnie zdefiniować dla tej grupy nowy zbiór reguł bez-
pieczeństwa (Permission Sets), który da aplikacji nieograniczony dostęp tylko do plików w jej
folderze.
Następnie napisać program, który spróbuje przeczytać plik w innej lokalizacji niż bieżący

katalog, umieścić go w folderze utworzonej grupy kodu i uruchomić.
Omówić efekt działania programu.
[1p]

3.13.3 Silny podpis kodu aplikacji

Bibliotekę zawierającą logikę aplikacji silnie podpisać na etapie kompilacji kluczem wygenero-
wanym programem sn.exe.
Przygotować duplikat biblioteki z logiką aplikacji, o tej samej nazwie i tej samej zawartości

(w sensie sygnatur), ale nie posiadającej silnego podpisu.
Jak zachowuje się moduł główny, uruchomiony z duplikatem biblioteki zamiast z oryginałem?

Kiedy taki scenariusz mógłby być użyteczny?
[1p]

Bibliografia

[1] http://msdn.microsoft.com

[2] Wiktor Zychla Windows oczami programisty, Mikom

[3] Archer T., Whitechapel A. Inside C#, Microsoft Press

[4] Eckel B. Thinking in C#, http://www.bruceeckel.com

[5] Gunnerson E. A Programmer’s Introduction to C#

[6] Lidin S. Inside Microsoft .NET IL Assembler, Microsoft Press

[7] Petzold Ch. Programming Windows, Microsoft Press

[8] Reilly Douglas J. Designing Microsoft ASP.NET Applications

[9] Scott Mitchel ASP.NET Data Web Controls Kick Start

[10] Nikhil Kothari, Vandana Datje Developing Microsoft ASP.NET Server Controls and
Components

[11] Andrew Troelsen COM and .NET Interoperability

41

