Paweł Woźny
Instytut Informatyki Uniwersytetu Wrocławskiego ul. Joliot-Curie 15, 50-383 Wrocław tel. 71 375 7816 Pawel.Wozny@cs.uni.wroc.pl Konsultacje: informacja w Systemie Zapisów. |
Doktoranci
[2] | F. Chudy, New algorithms for Bernstein polynomials, their dual bases, and B-spline functions, Instytut Informatyki Uniwersytetu Wrocławskiego, 2022 [PDF] |
[1] | P. Gospodarczyk, Degree reduction and merging of Bézier curves, Instytut Informatyki Uniwersytetu Wrocławskiego, 2016 [PDF] |
Publikacje
Spis publikacji i cytowań w wersji PDF.
[42] |
F. Chudy,
P. Woźny,
Efficient evaluation of Bernstein-Bézier coefficients of
B-spline basis functions over one knot span,
Computer Aided-Design, 178 (2025), 103804
[Abstract]
[DOI]
[arXiv]
|
[41] |
F. Chudy,
P. Woźny,
Fast evaluation of derivatives of Bézier curves,
Computer Aided Geometric Design, 109 (2024), 102277
[Abstract]
[DOI]
[arXiv]
Part of special issue Paul de Casteljau, a pioneer in CAGD edited by C.V. Beccari, K. Hormann, Ch. Rabut, W. Wang.
|
[40] |
F. Chudy,
P. Woźny,
Linear-time algorithm for computing the Bernstein-Bézier coefficients
of B-spline functions,
Computer Aided-Design, 154 (2023), 103434
[Abstract]
[DOI]
[arXiv]
|
[39] | F. Chudy, P. Woźny, Fast and accurate evaluation of dual Bernstein polynomials, Numerical Algorithms 87 (2021), 1001-1015 [Abstract] [DOI] [arXiv] |
[38] |
P. Woźny, F. Chudy,
Linear-time geometric algorithm for evaluating Bézier curves,
Computer Aided-Design 118 (2020), 102760
[Abstract]
[DOI]
[arXiv]
|
[37] | F. Chudy, P. Woźny, Differential-recurrence properties of dual Bernstein polynomials, Applied Mathematics and Computation 338 (2018), 537-543 [Abstract] [DOI] [arXiv] |
[36] | R. Nowak, P. Woźny, New properties of a certain method of summation of generalized hypergeometric series, Numerical Algorithms 76 (2017), 377-391 [Abstract] [DOI] [arXiv] |
[35] | S. Lewanowicz, P. Keller, P. Woźny, Bézier form of dual bivariate Bernstein polynomials, Advances in Computational Mathematics 43 (2017), 777-793 [Abstract] [DOI] [arXiv] |
[34] |
S. Lewanowicz,
P. Keller,
P. Woźny,
Constrained approximation of rational triangular Bézier surfaces
by polynomial triangular Bézier surfaces,
Numerical Algorithms 75 (2017), 93-111
[Abstract]
[DOI]
[arXiv]
|
[33] |
P. Gospodarczyk,
S. Lewanowicz,
P. Woźny,
Degree reduction of composite Bézier curves,
Applied Mathematics and Computation 293 (2017), 40-48
[Abstract]
[DOI]
[arXiv]
|
[32] | P. Gospodarczyk, P. Woźny, An iterative approximate method of solving boundary value problems using dual Bernstein polynomials, techn. report, Wrocław, Sep. 2017 [arXiv] |
[31] | P. Gospodarczyk, P. Woźny, Efficient modified Jacobi-Bernstein basis transformations, techn. report, Wrocław, Jan. 2017 [arXiv] |
[30] | P. Gospodarczyk, P. Woźny, Dual polynomial spline bases, techn. report, Wrocław, Nov. 2016 [arXiv] |
[29] |
P. Gospodarczyk,
P. Woźny,
Efficient degree reduction of Bézier curves with box constraints using dual bases,
techn. report, Wrocław, Dec. 2016
[arXiv]
|
[28] |
P. Gospodarczyk,
P. Woźny,
Merging of Bézier curves with box constraints,
Journal of Computational and Applied Mathematics
296 (2016), 265-274
[Abstract]
[DOI]
[arXiv]
|
[27] |
P. Gospodarczyk,
S. Lewanowicz,
P. Woźny,
$G^{k,l}$-constrained multi-degree reduction of Bézier curves,
Numerical Algorithms 71 (2016), 121-137
[Abstract]
[DOI]
[arXiv]
|
[26] |
P. Woźny, P. Gospodarczyk,
S. Lewanowicz,
Efficient merging of multiple segments of Bézier curves,
Applied Mathematics and Computation 268 (2015), 354-363
[Abstract]
[DOI]
[arXiv]
|
[25] |
S. Lewanowicz,
P. Woźny, P. Keller,
Weighted polynomial approximation of rational Bézier curves,
techn. report, Wrocław, Feb. 2015
[arXiv]
|
[24] | P. Woźny, Construction of dual B-spline functions, Journal of Computational and Applied Mathematics 260 (2014), 301-311 [Abstract] [DOI] |
[23] | P. Woźny, Bazy Bernsteina: dualność i zastosowania, autoreferat rozprawy habilitacyjnej, Wrocław, 2013, 25 stron [WWW] |
[22] | P. Woźny, A short note on Jacobi-Bernstein connection coefficients, Applied Mathematics and Computation 222 (2013), 53-57 [Abstract] [DOI] |
[21] |
S. Lewanowicz,
P. Woźny, R. Nowak,
Structure relations for the bivariate big q-Jacobi polynomials,
Applied Mathematics and Computation 219 (2013), 8790-8802
[Abstract]
[DOI]
|
[20] | P. Woźny, Construction of dual bases, Journal of Computational and Applied Mathematics 245 (2013), 75-85 [Abstract] [DOI] |
[19] | P. Woźny, Simple algorithms for computing the Bézier coefficients of the constrained dual Bernstein polynomials, Applied Mathematics and Computation 219 (2012), 2521-2525 [Abstract] [DOI] |
[18] |
S. Lewanowicz,
P. Woźny, P. Keller,
Polynomial approximation of rational Bézier curves with constraints,
Numerical Algorithms 59 (2012), 607-622
[Abstract]
[DOI]
|
[17] | S. Lewanowicz, P. Woźny, Bézier representation of the constrained dual Bernstein polynomials, Applied Mathematics and Computation 218 (2011), 4580-4586 [Abstract] [DOI] |
[16] |
S. Lewanowicz,
P. Woźny,
Multi-degree reduction of tensor product Bézier surfaces with general boundary constrains,
Applied Mathematics and Computation 217 (2011), 4596-4611
[Abstract]
[DOI]
|
[15] |
P. Woźny,
S. Lewanowicz,
Constrained multi-degree reduction of triangular Bézier surfaces using
dual Bernstein polynomials,
Journal of Computational and Applied Mathematics
235 (2010), 785-804
[Abstract]
[DOI]
|
[14] | P. Woźny, Efficient algorithm for summation of some slowly convergent series, Applied Numerical Mathematics 60 (2010), 1442-1453 [Abstract] [DOI] |
[13] | P. Keller, P. Woźny, On the convergence of the method for indefinite integration of oscillatory and singular functions, Applied Mathematics and Computation 216 (2010), 989-998 [Abstract] [DOI] |
[12] | S. Lewanowicz, P. Woźny, Two-variable orthogonal polynomials of big q-Jacobi type, Journal of Computational and Applied Mathematics 233 (2010), 1554-1561 [Abstract] [DOI] |
[11] | P. Woźny, R. Nowak, Method of summation of some slowly convergent series, Applied Mathematics and Computation 215 (2009), 1622-1645 [Abstract] [DOI] |
[10] | P. Woźny, S. Lewanowicz, Multi-degree reduction of Bézier curves with constraints, using dual Bernstein basis polynomials, Computer Aided Geometric Design 26 (2009), 566-579 [Abstract] [DOI] |
[9] | S. Lewanowicz, P. Woźny, I. Area, E. Godoy, Multivariate generalized Bernstein polynomials: identities for orthogonal polynomials of two variables, Numerical Algorithms 49 (2008), 199-220 [Abstract] [DOI] |
[8] | S. Lewanowicz, P. Woźny, Dual generalized Bernstein basis, Journal of Approximation Theory 138 (2006), 129-150 [Abstract] [DOI] |
[7] | S. Lewanowicz, P. Woźny, Connections between two-variable Bernstein and Jacobi polynomials on the triangle, Journal of Computational and Applied Mathematics 197 (2006), 520-533 [Abstract] [DOI] |
[6] | P. Woźny, Własności współczynników Fouriera względem semiklasycznych wielomianów ortogonalnych, praca doktorska, Instytut Informatyki Uniwersytetu Wrocławskiego, Wrocław, 2004 |
[5] | I. Area, E. Godoy, P. Woźny, S. Lewanowicz, A. Ronveaux, Formulae relating little q-Jacobi, q-Hahn and q-Bernstein polynomials: Application to the q-Bézier curve evaluation, Integral Transforms and Special Functions 15 (2004), 375-385 [Abstract] [DOI] |
[4] | S. Lewanowicz, P. Woźny, Generalized Bernstein polynomials, BIT Numerical Mathematics 44 (2004), 63-78 [Abstract] [DOI] |
[3] | S. Lewanowicz, P. Woźny, Recurrence relations for the coefficients in series expansions with respect to semi-classical orthogonal polynomials, Numerical Algorithms 35 (2004), 61-79 [Abstract] [DOI] |
[2] | P. Woźny, Recurrence relations for the coefficients of expansions in classical orthogonal polynomials of a discrete variable, Applicationes Mathematicae 30 (2003), 89-107 [Abstract] [DOI] |
[1] | S. Lewanowicz, P. Woźny Algorithms for construction of recurrence relations for the coefficients of expansions in series of classical orthogonal polynomials, techn. report, Inst. of Computer Sci., Univ. of Wrocław, Feb. 2000 [Abstract] |